matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis-Sonstigesf(x) herleiten
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Analysis-Sonstiges" - f(x) herleiten
f(x) herleiten < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

f(x) herleiten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:15 Sa 14.07.2007
Autor: nix19

Aufgabe
[mm] f(\bruch{1}{x})=x+\wurzel{1+x^2}, [/mm] x>0. Aufgabe: Gib f(x) an

Ich versuche die Aufgabe jetzt schon seit einer Stunde zu machen, komme aber auf keinen Grünen Zweig:

Substitioniert: [mm] \bruch{1}{x}=t [/mm]

Dann ist [mm] x=\bruch{1}{t} [/mm] und das eingesetzt in die Gleichung:

[mm] f(t)=\bruch{1}{t}+\wurzel{1+\bruch{1}{t^2}} [/mm]

so und dann weiß ich nicht wie ich weitermachen soll.

        
Bezug
f(x) herleiten: hinsehen
Status: (Antwort) fertig Status 
Datum: 15:24 Sa 14.07.2007
Autor: Kroni

Hi,

du willst also eine Funktion der Form f(x) haben.

Jetzt habe ich überlegt: Wenn ich eine Funktion habe, und für jedes x 1/x einsetzte, so soll für den ersten Summanden x herauskommen.
Wann passiert das?

Wenn ich in 1/x für x 1/x einsetzte, so steht dort hinterher ein x....

Mit dieser Überlegung kannst du die Wurzel auch "schlachten".

EDIT: Sry, hab nich genau hingesehen, das Ergebnis hast du da ja auch schon stehen mit der Überlegung.
Weitere Umformung siehe Loddars Post.

LG

Kroni

Bezug
        
Bezug
f(x) herleiten: Wurzel umfomen
Status: (Antwort) fertig Status 
Datum: 15:29 Sa 14.07.2007
Autor: Loddar

Hallo nix!


Das sieht doch schon sehr gut aus ... und nun noch etwas die Wurzel umformen, indem Du die beiden Terme gleichnamig machst:

[mm]f(t) \ = \ \bruch{1}{t}+\wurzel{1+\bruch{1}{t^2}} \ = \ \bruch{1}{t}+\wurzel{\bruch{t^2+1}{t^2}} \ = \ \bruch{1+\wurzel{1+t^2}}{t}[/mm]


Gruß
Loddar


Bezug
        
Bezug
f(x) herleiten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:04 Sa 14.07.2007
Autor: dormant

Hi!

Das Ergebnis ist schon richtig und die Idee ist auch i.O. und alles in allem ist die Lösung OK. Ich finde aber nur, dass man einen Zwischenschritt machen soll, bevor man eine Substitution durchführt. Du willst ja 1/x durch t substituieren. Das Problem ist, dass da (noch) nirgendwo ein 1/x steht. Deswegen sollte man korrekterweise so umformen:

[mm] f(\bruch{1}{x})=x+\wurzel{1+x^{2}}=\bruch{1}{\bruch{1}{x}}+\wurzel{1+\left(\bruch{1}{\bruch{1}{x}}\right)^{2}}. [/mm]

Jetzt darf man substituieren und kommt ohne weiteres auf dein Ergebnis - [mm] f(x)=\bruch{1+\wurzel{x^{2}+1}}{x}. [/mm]

Gruß,
dormant

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]