matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenfunktionsaufstellung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Funktionen" - funktionsaufstellung
funktionsaufstellung < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

funktionsaufstellung: feste regeln
Status: (Frage) beantwortet Status 
Datum: 23:07 Di 28.02.2006
Autor: orange

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

kann mir viell jemand weiterhelfen, sie ich zu einem Schaubild eine passende Funktion aufstellen kann??
Ich erkenne zwar selber,dass beispielsweise eine Punktsymmetrie zu einem best. Punkt vorliegt, das die Funktion gebrochen rational sein muss... aber ich weiß leider nicht, wie ich das dann in meine gesuchte funktion reinbekomme?

würde mich über Regeln oder sonstige Hilfe freun!


        
Bezug
funktionsaufstellung: Antwort
Status: (Antwort) fertig Status 
Datum: 08:03 Do 02.03.2006
Autor: mathiash

Hallo und guten Morgen,

also wenn Du schon weisst, dass das f gebrochen-rational sein muss, so suchst Du also Polynome
p(x) und [mm] q(x)\neq [/mm] 0 (also nicht identisch gleich dem Null-Polynom) mit

[mm] f(x)=\frac{p(x)}{q(x)} [/mm]

Gut waere es, wenn Du irgendwoher noch die Information ziehen koenntest, wie hoch der Grad der Polynome p(x),q(x)
hoechstens sein kann. Denn wenn Du zB weisst, dass beide vom Grad hoechstens 2 sind, dann kannst Du also ansetzen:

[mm] p(x)=a_2x^2+a_1x+a_0 [/mm]

[mm] q(x)=b_2x^2+b_1x+b_0 [/mm]

und dann moechtest Du anhand der Dir gegebenen Informationen (Nullstellen, Symmetrie etc.)
ein Gleichungssystem fuer die Koeffizienten [mm] a_i,b_i [/mm] aufstellen (und hoffentlich loesen).

So wuerde zB eine Nullstelle bei [mm] x_0 [/mm] als Gleichung ergeben:

[mm] a_2\cdot x_0^2+a_1\cdot x_0+a_0=0 [/mm]

Punktsymmetrie zu [mm] (x_1,y_1) [/mm] ergaebe

zB

[mm] f(x_1-x)= [/mm] - [mm] f(x_1+x) [/mm]

und das in die Darstellung [mm] f(x)=\frac{p(x)}{q(x)} [/mm] einsetzen, also

[mm] p(x_1-x)\cdot q(x_1+x)=p(x_1+x)\cdot q(x_1-x) [/mm]

Und dann wird froehlich gerechnet.

Viele Gruesse,

Mathias

Bezug
                
Bezug
funktionsaufstellung: *räusper*
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:10 Do 02.03.2006
Autor: Loddar

Guten Morgen Mathias!


> Punktsymmetrie zu [mm](x_1,y_1)[/mm] ergaebe zB  [mm]f(x_1-x)=[/mm] - [mm]f(x_1+x)[/mm]

Na, das halte ich für ein Gerücht ;-) . Das sollte doch heißen:

[mm] $f(x_1-x) [/mm] + [mm] f(x_1+x) [/mm] \ = \ [mm] \red{2*y_1}$ [/mm]

Deine genannte Formel gilt nur für [mm] $y_1 [/mm] \ = \ 0$ .


Gruß
Loddar


Bezug
                        
Bezug
funktionsaufstellung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:33 Do 02.03.2006
Autor: mathiash

Guten Morgen Loddar und alle anderen Freunde von Symmetrie,

jaa, sicher, danke, Du hast natuerlich vollkommen recht !!!

(Hat da jemand koffeinfreien Kaffee in unsere Kaffeedose getan ?)

Also:

[mm] f(x_1-x)-y_1 [/mm] = [mm] y_1-f(x_1+x) [/mm]

wenn die Steigung im Pkt. [mm] (x_1,y_1) [/mm] negativ ist, und wenn sie positiv ist:

[mm] f(x_1+x)-y_1=y_1-f(x_1-x) [/mm]

Hoffentlich stimmt's jetzt.

Viele Gruesse,

Mathias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]