matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenRationale Funktionengebrochen Rationale Funktionen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Rationale Funktionen" - gebrochen Rationale Funktionen
gebrochen Rationale Funktionen < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

gebrochen Rationale Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:35 Do 08.03.2007
Autor: miniscout

Aufgabe
Eine 5m lange Blechrinne besteht aus einem Grundblech der Breite a und zwei um 60° dagegen geneigte Seitenblechen der Breite b. Der Rinnenquerschnitt soll 400cm² betragen.

Wie müssen a und b gewählt werden, damit der Materialbedarf minimal ist (Umfang minimal)?



Hallo ihr da draußen!

Also ich hab versucht das ganze zu rechnen, komme aber auf kein Ergebnis. Wäre euch also sehr dankbar, wenn ihr mal drüberschauen könntet und mir sagt, ob das so stimmt.
[Dateianhang nicht öffentlich]
geg.: A = 400    h = b*sin(30°)    c = b*cos(30°)

$A = (a+c)*h$

$400 = (a + b*cos(30°))*b*sin(30°)$

$a = [mm] \bruch{400}{b*sin(30°)} [/mm] - b*cos(30°)$


$U = a + 2b$

$U(b) = [mm] \bruch{400}{b*sin(30°)} [/mm] - b*cos(30°) + 2b$

$U'(b) = [mm] \bruch{400}{b² * sin(30°)} [/mm] - cos(30°) + 2$


Extrema:

$U'(b) = 0$

$0 = [mm] -\bruch{400}{b² * sin(30°)} [/mm] - cos(30°) + 2$

[mm] $\bruch{400}{b² * sin(30°)} [/mm] = - cos(30°) + 2$

$400 = (-cos(30°)+2)* b² * sin(30°) $

[mm] $\bruch{400}{(-cos(30°)+2)*sin(30°)} [/mm] = b²$

[mm] $b_{1,2} [/mm] = [mm] \pm \wurzel{\bruch{400}{(-cos(30°)+2)*sin(30°)}}$ [/mm]

[mm] $b_{1,2} [/mm] = [mm] \pm [/mm] 20* [mm] \wurzel{\bruch{1}{(-cos(30°)+2)*sin(30°)}}$ [/mm]

[mm] $b_{1,2} [/mm] = [mm] \pm [/mm]  20* [mm] \wurzel{-0,5483}$ [/mm]


So, jetzt komm ich nicht mehr weiter, da ich ja schließlich keine Wurzel aus negativen Zahlen ziehen kann.

Wo liegt mein Fehler?

Danke für eure Hilfe!

Gruß miniscout

Dateianhänge:
Anhang Nr. 1 (Typ: gif) [nicht öffentlich]
        
Bezug
gebrochen Rationale Funktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:47 Do 08.03.2007
Autor: hase-hh

moin,

ich komm da nicht ganz mit...

was ist gefragt? der umfang? oder die obrfläche oder was?

vielleicht blicke ich da snicht richtig, aber dann bekommst du doch ein gleichschenkliges (oder, falls die geneigten Seitenbleche auch noch kontakt zu einander haben: ein gleichseitiges) dreieck.

nun denke ich an den umfang eines dreiecks, bzw. an den flächeninhalt. darüber kann man sicher die seitenlänge b bestimmen.

breite rinne * länge  rinne + 2* (breite geneigte seite * länge rinne).

und das dann maximieren...


gruß
wolfgang










> Eine 5m lange Blechrinne besteht aus einem Grundblech der
> Breite a und zwei um 60° dagegen geneigte Seitenblechen der
> Breite b. Der Rinnenquerschnitt soll 400cm² betragen.
>
> Wie müssen a und b gewählt werden, damit der Materialbedarf
> minimal ist (Umfang minimal)?
>  
>
> Hallo ihr da draußen!
>  
> Also ich hab versucht das ganze zu rechnen, komme aber auf
> kein Ergebnis. Wäre euch also sehr dankbar, wenn ihr mal
> drüberschauen könntet und mir sagt, ob das so stimmt.
>  [Dateianhang nicht öffentlich]
>  geg.: A = 400    h = b*sin(30°)    c = b*cos(30°)
>  
> [mm]A = (a+c)*h[/mm]
>  
> [mm]400 = (a + b*cos(30°))*b*sin(30°)[/mm]
>  
> [mm]a = \bruch{400}{b*sin(30°)} - b*cos(30°)[/mm]
>  
>
> [mm]U = a + 2b[/mm]
>  
> [mm]U(b) = \bruch{400}{b*sin(30°)} - b*cos(30°) + 2b[/mm]
>  
> [mm]U'(b) = \bruch{400}{b² * sin(30°)} - cos(30°) + 2[/mm]
>  
>
> Extrema:
>  
> [mm]U'(b) = 0[/mm]
>  
> [mm]0 = -\bruch{400}{b² * sin(30°)} - cos(30°) + 2[/mm]
>  
> [mm]\bruch{400}{b² * sin(30°)} = - cos(30°) + 2[/mm]
>  
> [mm]400 = (-cos(30°)+2)* b² * sin(30°)[/mm]
>  
> [mm]\bruch{400}{(-cos(30°)+2)*sin(30°)} = b²[/mm]
>  
> [mm]b_{1,2} = \pm \wurzel{\bruch{400}{(-cos(30°)+2)*sin(30°)}}[/mm]
>  
> [mm]b_{1,2} = \pm 20* \wurzel{\bruch{1}{(-cos(30°)+2)*sin(30°)}}[/mm]
>  
> [mm]b_{1,2} = \pm 20* \wurzel{-0,5483}[/mm]
>  
>
> So, jetzt komm ich nicht mehr weiter, da ich ja schließlich
> keine Wurzel aus negativen Zahlen ziehen kann.
>  
> Wo liegt mein Fehler?
>  
> Danke für eure Hilfe!
>  
> Gruß miniscout


Bezug
        
Bezug
gebrochen Rationale Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:49 Do 08.03.2007
Autor: Hugo_Sanchez-Vicario

Hallo miniscout,

du hast deine Ableitung U' falsch aufgeschrieben, aber das ist nur ein Schreibfehler, du rechnest später richtig weiter.

Also bei mir ist (-cos(30˚)+2) positiv und sin(30˚) auch. Ich kann deine negative Zahl unter der Wurzel nicht nachvollziehen.

Hugo

Bezug
                
Bezug
gebrochen Rationale Funktionen: Fehler gefunden
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:42 Fr 09.03.2007
Autor: miniscout

Hallo und Danke für die Hilfe.

Hab meinen Fehler gefunden - man sollte halt mim Taschenrechner umgehen können - ich habe Deg statt Rad eingestelt gehabt.

Gruß miniscout

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]