matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraggT
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Algebra" - ggT
ggT < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

ggT: Kein Ansatz
Status: (Frage) beantwortet Status 
Datum: 17:52 So 03.02.2008
Autor: DaMazen

Aufgabe
Sei p eine Primzahl

Für alle natürlichen Zahlen a,b, deren ggT p ist, untersuche man, welche natürlichen Zahlen als größte gemeinsame Teiler von

a) a² und b
b) a³ und b
c) a² und b³

auftreten können.

Ich habe viel ausprobiert, komme aber leider nie zu schlüssigen Ergebnissen und wenn ich eins habe, kann ich es selber durch ein Zahlenbeispiel wiederlegen.
Vielleicht kann mir jemand bei a) helfen und dann schaffe ich b) und c) alleine?

        
Bezug
ggT: Antwort
Status: (Antwort) fertig Status 
Datum: 18:34 So 03.02.2008
Autor: Somebody


> Sei p eine Primzahl
>  
> Für alle natürlichen Zahlen a,b, deren ggT p ist,
> untersuche man, welche natürlichen Zahlen als größte
> gemeinsame Teiler von
>  
> a) a² und b
>  b) a³ und b
>  c) a² und b³
>  
> auftreten können.
>  Ich habe viel ausprobiert, komme aber leider nie zu
> schlüssigen Ergebnissen und wenn ich eins habe, kann ich es
> selber durch ein Zahlenbeispiel wiederlegen.

>  Vielleicht kann mir jemand bei a) helfen und dann schaffe
> ich b) und c) alleine?

Quadrieren verdoppelt die Exponenten der Primfaktoren, kubieren verdreifacht sie; die Exponenten, die in der Primfaktorzerlegung des [mm] $\mathrm{ggT}(x,y)$ [/mm] auftreten, sind jeweils der kleinere der entsprechenden Exponenten, die in den Primfaktorzerlegungen von $x$ bzw. $y$ auftreten.
Dies hat z.B. zur Folge, dass [mm] $\mathrm{ggT}(a^2,b)$ [/mm] gleich $p$ aber auch gleich [mm] $p^2$ [/mm] (oder, bezüglich Teilbarkeit, etwas dazwischen) sein kann. (Was genau, hängt noch von $b$ ab.) [mm] $\frac{a}{p}$ [/mm] und [mm] $\frac{b}{p}$ [/mm] sind teilerfremd weil $p$ ihr ggT ist - aber [mm] $\frac{a^2}{p}=a\cdot \frac{a}{p}$ [/mm] und [mm] $\frac{b}{p}$? [/mm]


Bezug
                
Bezug
ggT: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:00 So 03.02.2008
Autor: DaMazen

Moin, ich denke dieser Gedanke wird mir gut weiterhelfen. Werde mich dann morgen damit noch einmal auseinandersetzen.

Vielen Dank

Bezug
        
Bezug
ggT: Antwort
Status: (Antwort) fertig Status 
Datum: 19:03 So 03.02.2008
Autor: abakus


> Sei p eine Primzahl
>  
> Für alle natürlichen Zahlen a,b, deren ggT p ist,
> untersuche man, welche natürlichen Zahlen als größte
> gemeinsame Teiler von
>  
> a) a² und b
>  b) a³ und b
>  c) a² und b³
>  
> auftreten können.
>  Ich habe viel ausprobiert, komme aber leider nie zu
> schlüssigen Ergebnissen und wenn ich eins habe, kann ich es
> selber durch ein Zahlenbeispiel wiederlegen.
>  Vielleicht kann mir jemand bei a) helfen und dann schaffe
> ich b) und c) alleine?

Wenn p der ggT von a und b ist, dann
- enthalten a und b keine weiteren gemeinsamen Primfaktoren
- sie enthalten beide einen Faktor p
- einer von beiden kann p auch beliebig oft enthalten

4 Fälle sind möglich, für den ersten habe ich bereits die Lösungen a) bis c) angegeben.

Fall 1: Beide (a und b) enthalten genau ein p
Die gesuchten ggt sind dann: a) p  , b) p  , c) [mm] p^2 [/mm]

Fall 2: a enthält genau einen Faktor p und b enthält genau zwei Faktoren p



Fall 3: a enthält genau einen Faktor p und b enthält mehr als zwei Faktoren p


Fall 4: a enthält mindestens zwei Faktoren p und b enthält genau einen Faktor p


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]