matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraggt komplexer Zahlen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Algebra" - ggt komplexer Zahlen
ggt komplexer Zahlen < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

ggt komplexer Zahlen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 16:00 Fr 04.05.2007
Autor: LenaFre

Aufgabe
Bestimmen Sie mit dem euklidischen Algorithmus einen ggt der Zahlen 7-11i und 8+i in [mm] \IZ[i]. [/mm]

Meine Frage ist nun, wie der euklidische Algoritmus bei zwei komplexen Zahlen funktioniert?

Also in [mm] \IC [/mm]  durch z=x+iy [mm] (x,y\in \IR [/mm] (in unserem Fall)) zu dividieren heißt mit [mm] \bruch{1}{z}=\bruch{z z^{*}}{z^{*}}=\bruch{1}{x^{2}+y^{2}}(x-iy) [/mm] zu multiplzieren.

Leider komme ich damit aber auch noch nicht weiter!

Vielen Dank für eure Hilfe

        
Bezug
ggt komplexer Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 08:21 So 06.05.2007
Autor: statler

Guten Morgen Lena!

> Bestimmen Sie mit dem euklidischen Algorithmus einen ggt
> der Zahlen 7-11i und 8+i in [mm]\IZ[i].[/mm]
> Meine Frage ist nun, wie der euklidische Algoritmus bei
> zwei komplexen Zahlen funktioniert?

Der funktioniert so: Ich bilde für [mm] z_{1}, z_{2} \in \IZ[i] [/mm]  den richtigen Quotienten q' in [mm] \IC [/mm] und wähle dann q [mm] \in \IZ[i] [/mm] so, daß die Differenzen der Real- und Imaginärteile beide [mm] \le \bruch{1}{2} [/mm] sind. Dann berechne ich [mm] z_{1} [/mm] - [mm] q*z_{2} [/mm] = r und mache mit [mm] z_{2} [/mm] und r weiter. Hier sieht dieser 1. Schritt so aus:
7-11i - (1-i)(8+i) = -2-4i

Vielleicht machst du mal den Rest, es sind nur noch 2 Schritte.

Nachlesen kann man das bei van der Waerden, Algebra I

Gruß aus HH-Harburg
Dieter


Bezug
                
Bezug
ggt komplexer Zahlen: Verdeutlichung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:41 So 06.05.2007
Autor: HJKweseleit

Vielleicht ist nicht ganz klar, wie man von q' auf q kommt:

Nach der exakten Division erhältst du q'=a+bi, wobei a und b i.a. Brüche sind. Nun rundest du a und b auf die nächste ganze Zahl nach den bekannten Rundungsregeln und erhältst dann damit q.

Bezug
                        
Bezug
ggt komplexer Zahlen: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 22:24 Mi 24.10.2007
Autor: Grenzwert

Ich habe ein ähnliches Problem zu lösen..
Nur stehe ich momentan auf dem Schlauch.. :(
Also wenn ich die beiden komplexen Zahlen habe, möchte ich ja was von der Form
[mm] a=q_{0}*r_{0}+r_{1} [/mm]
und dies ziehe ich so lange weiter bis der rest null ist, nicht?
und das gefundene [mm] r_{n} [/mm] mit [mm] r_{n-1}=q_{n-1}*r_{n}+0 [/mm] ist mein ggT.
So weit so gut, nur bei komplexen Zahlen:
wie finde ich die q. Ich habe ja den imaginär teil und den reellen teil zu betrachten.. Am Beispiel:
ggT(31-2*i,6+8*i) also
31-2*i = [mm] q_{0}*(6+8*i) +r_{1} [/mm]
wie komme ich auf [mm] q_{0}? [/mm] Versuche ich den imaginärteil anzupassen? soll [mm] q_{0} [/mm] eine reelle Zahl sein?

Ja ich habe einige Fragen =) Wäre froh um Tipps..
Vielen lieben Dank für die Mühe!!

Bezug
                                
Bezug
ggt komplexer Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 00:57 Do 25.10.2007
Autor: leduart

Hallo
[mm] q_0 [/mm] ist im Allgemeinen keine reelle Zahl!
Hast du das Verfahren, was Statler angegeben hat versucht, was geht da schief?
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]