matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchulPhysikgleichmäßige Beschleunigung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "SchulPhysik" - gleichmäßige Beschleunigung
gleichmäßige Beschleunigung < SchulPhysik < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "SchulPhysik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

gleichmäßige Beschleunigung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:15 So 26.02.2012
Autor: atseaa

Aufgabe
Ein Auto fährt mit gleichmäßiger Beschleunigung eine Strecke von 1000 Metern ab. Bei Beginn der Strecke hat das Auto [mm] v_1=30 [/mm] m/s, am Ende [mm] v_2=50 [/mm] m/s.
Wie lange dauert der Beschleunigungsvorgang?

Ich habe zuerst nach diese Prinzip gerechnet, was eigentlich stimmen müsste:

s = 1000m
[mm] v_1 [/mm] = 30 m/s
[mm] v_2 [/mm] = 50 m/s
delta(v) = 20 m/s
t = Zeit wenn die 1000 m erreicht werden.

s = 1/2 * a * [mm] t^2 [/mm] + [mm] v_1 [/mm] * t
mit a = delta(v)/t

Damit lässt sich einfach nach t umstellen und wir haben das Ergebnis.

Allerdings möchte ich das ganze noch mit Integralen kapieren, und dort habe ich wohl einen Systemfehler drin:

mit [mm] s=\int\Delta vdt+v_{1}t [/mm]

[mm] s=[\Delta vt]_{0}^{t}+v_{1}t=\Delta vt+v_{1}t=(\Delta v+v_{1})t=v_{2}t [/mm]

Und das was jetzt da steht, kann ja nicht sein. Dann hätte ich nämlich laut [mm] t=s/v_{2} [/mm] die gesamte Strecke mit der Endgeschwindigkeit zurückgelegt.

        
Bezug
gleichmäßige Beschleunigung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:51 So 26.02.2012
Autor: atseaa

Howdy, will eine kurze Mitteilung schreiben, und zwar wurde mir die Notwendigkeit der Einführung der "1/2" im Integral klar, als ich mir das ganze mal aufgezeichnet habe im v-t-Diagramm, wobei die Fläche unter der Funktion im Bereich 0 bis t ja unsere Strecke ist.

Falls du, Murmel, noch andere Anmerkungen machst, die das Thema noch besser beleuchten, hau rein. :)

Bezug
        
Bezug
gleichmäßige Beschleunigung: Integral
Status: (Antwort) fertig Status 
Datum: 23:53 So 26.02.2012
Autor: murmel

Hi,

Eher:

[mm] \int_{v_0}^{v} \mathrm{d}v = a \int_{t_1}^{t_2} \mathrm{d} t[/mm]

[mm] \int_{s_0}^{s} \mathrm{d}s = \int_{t_1}^{t_2} \left(a\,t + v_0\right) \mathrm{d} t[/mm]

Aber sonst, passt's :o)

Bezug
                
Bezug
gleichmäßige Beschleunigung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:00 Mo 27.02.2012
Autor: murmel

Habe den Fehler im letzten Integral korrigiert.

Gruß
murmel

Bezug
                        
Bezug
gleichmäßige Beschleunigung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:04 Mo 27.02.2012
Autor: murmel

Oooops, und noch ein Fehler! Die Integralsgrenzen sind nicht akurat gewählt.

Eher dann so:


$ [mm] \int_{v_0}^{v} \mathrm{d}v' [/mm] = a [mm] \int_{t_0}^{t_2} \mathrm{d} [/mm] t $

$ [mm] \int_{s_0}^{s} \mathrm{d}s' [/mm] = [mm] \int_{t_0}^{t_2} \left(a\,t + v_0\right) \mathrm{d} [/mm] t $

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "SchulPhysik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]