matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysisgleichmäßige Stetigkeit
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis" - gleichmäßige Stetigkeit
gleichmäßige Stetigkeit < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

gleichmäßige Stetigkeit: Idee
Status: (Frage) beantwortet Status 
Datum: 19:30 Di 17.01.2006
Autor: charly1607

Aufgabe 1
Untersuchen Sie die folgenden Funktionen auf gleichmäßige Stetigkeit:
g: [mm] \IR\backslash \{0\} [/mm] --> [mm] \IR [/mm] , x [mm] \mapsto [/mm] 1/x²

Aufgabe 2
die gleiche Aufgabenstellung mit folgender Funktion:
[mm] \IR [/mm] --> [mm] \IR [/mm] , x [mm] \mapsto [/mm] |x|

hallo alle miteinander.
ich habe keine ahnung, wie ich das angehen soll, ich meine mit dem epsilon und so. kann mir daas mal jemand erklären und ein paar tipps zur lösung geben.
wäre echt nett, schon jetzt mal vielen dank
lg charly1607

        
Bezug
gleichmäßige Stetigkeit: zu Aufgabe 2
Status: (Antwort) fertig Status 
Datum: 13:01 Mi 18.01.2006
Autor: Julius

Hallo Charly!

Bei Aufgabe 1 muss man ziemlich rumfrickeln, um zu zeigen, dass die Funktion nicht gleichmäßig stetig ist, das ist mir jetzt zu aufwändig.

Aufgabe 2 ist aber einfach: Nach der Dreiecksungleichung gilt:

(*) $||x| - |y|| [mm] \le [/mm] |x-y|$.

D.h. ist [mm] $\varepsilon>0$ [/mm] beliebig vorgegeben, dann wähle [mm] $\delta:=\varepsilon$, [/mm] und für alle $x,y [mm] \in \IR$ [/mm] mit $|x-y| < [mm] \delta$ [/mm] folgt:

$||x| - |y|| [mm] \le \varepsilon$ [/mm]

wegen (*), also die gleichmäßige Stetigkeit.

Liebe Grüße
Julius

Bezug
        
Bezug
gleichmäßige Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 20:35 Mi 18.01.2006
Autor: SEcki


>  g: [mm]\IR\backslash \{0\}[/mm] --> [mm]\IR[/mm] , x [mm]\mapsto[/mm] 1/x²

Direkt zeigen: Für jedes [m]\delta[/m] exitieren [m]x_1,x_2\in (0,\delta][/m] mit [m]g(x_1)-g(x_2)>1[/m]. Dies folgt mehr oder minder direkt daraus, dass die Funktion an dieser Stelle gegen Unendlich bahupt. das müsstest du ausformulieren.

Indirket: wäre sie glm. stetig, so könnte man sie auf [m]\IR[/m] stetig fortsetzen, das geht aber nicht.

SEcki

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]