matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionengradient und laplace
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Funktionen" - gradient und laplace
gradient und laplace < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

gradient und laplace: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 21:55 Fr 25.05.2007
Autor: grashalm

Aufgabe
Gegeben sei die zweimal steig diffbare Funktion [mm] f:\IR^{+}\to\IR^{+} r\mapsto [/mm] f(r(x)) mit [mm] r(x):=\left|| x\right||_{2}, x\in \IR^n [/mm] ohne {0}.
Bestimmen sie in allgemeiner Form
[mm] \nabla [/mm]  f und [mm] \Delta [/mm] f und weißen sie anschließend die Funktion [mm] f(r)=r^{2-n} [/mm] nach, dass =0 gilt.

Hallo.
Mh ich komm nicht so recht voran hier. Kann mir bitte jemand helfen.
Also ich hab ja so zu sagen einen Fahrplan bekommen.

Zuerst r selbst differenzieren. Dann Gradient dann Laplace und Kettenregel anwenden.

Mh also die Definitionen hab ich ja von Gradient und Laplace.
Aber ich hab schon schwierigkeiten r differenzieren?
Ableitung von [mm] \left|| x\right||_{2}=\wurzel{\summe_{i=1}^{n}\left| x_{i}\right|^2 } [/mm] keine wirklich idee und erst recht nicht bei f(r)

Kann mir jemand helfen?

        
Bezug
gradient und laplace: Kettenregel
Status: (Antwort) fertig Status 
Datum: 10:27 Sa 26.05.2007
Autor: subclasser

Hallo Grashalm!

Du kannst die partiellen Ableitungen von $r$ mit der Kettenregel bestimmen. Du kannst ja anfangs mal $n = 2$ setzen und dann partiell nach beiden Variabeln ableiten. Dann wirst du hoffentlich sehen, wie es für größere $n$ klappt.

Ich hoffe, das hilft dir ein wenig weiter!

Gruß!

Bezug
                
Bezug
gradient und laplace: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:56 Di 29.05.2007
Autor: grashalm

Ich weiß ja genau nicht wie ich ein derartiges r ableite. Kann mir bitte jemand helfen. Bzw was ich dann damit anstelle.

Bezug
                        
Bezug
gradient und laplace: Lösung für n = 2
Status: (Antwort) fertig Status 
Datum: 17:56 Di 29.05.2007
Autor: subclasser

Hallo!

Ich mache es dir einmal für $n = 2$ vor, aber es sollte dir dann nicht mehr schwerfallen, auf größere $n$ zu schließen. Also es gilt [mm] $\| [/mm] x [mm] \| [/mm] = [mm] \sqrt{x_1^2 + x_2^2}$. [/mm] Damit gilt
[mm] $$\frac{\partial}{\partial x_1} \| [/mm] x [mm] \| [/mm] = [mm] \frac{2x_1}{2\sqrt{x_1^2 + x_2^2}} [/mm] = [mm] \frac{x_1}{\| x \|}$$ [/mm]
Dabei habe ich einfach die Kettenregel angewendet (achte auf die innere Ableitung).

Gruß!

Bezug
                                
Bezug
gradient und laplace: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:54 Mi 30.05.2007
Autor: grashalm

Gut also die partiellen Ableitungen sind immer in dieser Form:
[mm] \frac{\partial}{\partial x_n} \| [/mm] x [mm] \| [/mm] = [mm] \frac{2x_n}{2\sqrt{x_1^2 +...+ x_n^2}} [/mm] = [mm] \frac{x_n}{\| x \|} [/mm]

Aber wie komme ich dann auf Gradient und Laplace von f???
Wie bring ich das r mit f in Verbindung

Bezug
                                        
Bezug
gradient und laplace: Antwort
Status: (Antwort) fertig Status 
Datum: 15:39 Mi 30.05.2007
Autor: leduart

Hallo
ich denke in deinem ersten post muss stehen f(r(x)) und nicht r(r(x)
dann gilt einfach :
[mm][mm] \frac{\partial}{\partial x_n}f=f_x*r_x [/mm]
also die Kettnregel wie im eindimensionalen.
Gruss leduart



Bezug
        
Bezug
gradient und laplace: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:21 Do 31.05.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]