matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe Analysisharmonische Funktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Komplexe Analysis" - harmonische Funktion
harmonische Funktion < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

harmonische Funktion: Korrektur
Status: (Frage) beantwortet Status 
Datum: 20:19 So 02.10.2011
Autor: kushkush

Aufgabe
Sei [mm] $G\subset \IC$ [/mm] ein Gebiet. Eine zweimal stetig differenzierbare Funktion [mm] $u:G\rightarrow \IR$ [/mm] heisst harmonisch, wenn [mm] $u_{xx}+u_{yy}=0$ [/mm] in G ist.

Zeige: Falls $f=u+iv [mm] \in [/mm] O(G)$, so ist u und v in G harmonisch. (Hinweis: Verwende die noch nicht bewiesene Tatsache, dass mit f auch f' holomorph ist.)

Hallo,


f ,f' sind holomorph also gelten die CauRieDGL:

(1):
               [mm] $u_{x}=v_{y}$ [/mm]
               [mm] $u_{y}=-v_{x}$ [/mm]


setzt man (1) in [mm] $f'=u_{x}(x,y)+iv_{x}(x,y)$ [/mm] ein  gelten die CauRieDGL wieder:

(2):
               [mm] $u_{xx}=u_{xy}$ [/mm]
               [mm] $u_{yy}=-u_{yx}$ [/mm]

[mm] $\Rightarrow u_{xx}+u_{yy} [/mm] = 0$

Frage: stimmt das so und muss ich noch zeigen dass der Satz von Schwarz gilt?




Danke für jegliche Hilfe!!



Gruss
kushkush

        
Bezug
harmonische Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 20:38 So 02.10.2011
Autor: MathePower

Hallo kushkush,

> Sei [mm]G\subset \IC[/mm] ein Gebiet. Eine zweimal stetig
> differenzierbare Funktion [mm]u:G\rightarrow \IR[/mm] heisst
> harmonisch, wenn [mm]u_{xx}+u_{yy}=0[/mm] in G ist.
>  
> Zeige: Falls [mm]f=u+iv \in O(G)[/mm], so ist u und v in G
> harmonisch. (Hinweis: Verwende die noch nicht bewiesene
> Tatsache, dass mit f auch f' holomorph ist.)
>  Hallo,
>  
>
> f ,f' sind holomorph also gelten die CauRieDGL:
>
> (1):
>                 [mm]u_{x}=v_{y}[/mm]
>                 [mm]u_{y}=-v_{x}[/mm]
>  
>
> setzt man (1) in [mm]f'=u_{x}(x,y)+iv_{x}(x,y)[/mm] ein  gelten die


Hier musst Du doch

[mm]f_{x}=u_{x}(x,y)+iv_{x}(x,y)[/mm] und [mm]f_{y}=u_{y}(x,y)+iv_{y}(x,y)[/mm]

betrachten.


> CauRieDGL wieder:
>  
> (2):
>                 [mm]u_{xx}=u_{xy}[/mm]
>                 [mm]u_{yy}=-u_{yx}[/mm]
>


Hier muss doch stehen:

                 [mm]u_{xx}=\blue{v}_{xy}[/mm]
                 [mm]u_{\blue{x}y}=-\blue{v}_{y\blue{y}}[/mm]


> [mm]\Rightarrow u_{xx}+u_{yy} = 0[/mm]
>  
> Frage: stimmt das so und muss ich noch zeigen dass der Satz
> von Schwarz gilt?
>


Für eine zweimal stetig differenzierbare Funktion
gilt der Satz von Schwarz.


>
>
>
> Danke für jegliche Hilfe!!
>  
>
>
> Gruss
>  kushkush


Gruss
MathePower

Bezug
                
Bezug
harmonische Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:56 So 02.10.2011
Autor: kushkush

Hallo MathePower,


>


Sorrie für die vielen Fehler! Danke vielmals!  







Gruss
kushkush

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]