matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPhysikharmonische Wellen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Physik" - harmonische Wellen
harmonische Wellen < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

harmonische Wellen: Verständnisfrage
Status: (Frage) beantwortet Status 
Datum: 11:40 Fr 16.11.2012
Autor: Infostudent

Hallo,

in meinem Buch ist die Wellenlänge [mm] \lambda [/mm] definiert als Abstand zweier benachbarter Oszillatoren, die in gleicher Phase schwingen. Die Ausbreitungsgeschwindigkeit [mm] c=\lambda/T [/mm] als Geschwindigkeit, mit der sich eine bestimmte Schwingungsphase bewegt.

Nun habe ich zwei Graphen für t=0 und t =0,2, aus denen ich diese Größen ableiten soll. Im ersten startet die Welle in x=0cm, hat ihren Wellenberg bei x=1,5cm, ihr Wellental bei x=4,5cm und erreiche bei x=6cm wieder ihren Ausgangszustand.
Im zweiten Graph ist die Welle um 1,5cm verschoben.

Nun wird die Wellenlänge als Abstand z.B. zweier Wellenberge innerhalb eines Graphs, also [mm] \lambda [/mm] = 7,5cm-1,5cm = 6cm, berechnet. So weit so gut.
Für die Ausbreitungsgeschwindigkeit gilt dann plötzlich [mm] c=\lambda/t [/mm] = 3cm/0,2s = 15cm/s. Warum ist [mm] \lambda [/mm] vorher 6cm und nun plötzlich 3cm? Ist das also gar keine absolute Größe?

        
Bezug
harmonische Wellen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:57 Fr 16.11.2012
Autor: reverend

Hallo Infostudent,

> in meinem Buch ist die Wellenlänge [mm]\lambda[/mm] definiert als
> Abstand zweier benachbarter Oszillatoren, die in gleicher
> Phase schwingen. Die Ausbreitungsgeschwindigkeit
> [mm]c=\lambda/T[/mm] als Geschwindigkeit, mit der sich eine
> bestimmte Schwingungsphase bewegt.

T ist dabei die Schwingungsdauer!

> Nun habe ich zwei Graphen für t=0 und t =0,2, aus denen
> ich diese Größen ableiten soll. Im ersten startet die
> Welle in x=0cm, hat ihren Wellenberg bei x=1,5cm, ihr
> Wellental bei x=4,5cm und erreiche bei x=6cm wieder ihren
> Ausgangszustand.
>  Im zweiten Graph ist die Welle um 1,5cm verschoben.
>  
> Nun wird die Wellenlänge als Abstand z.B. zweier
> Wellenberge innerhalb eines Graphs, also [mm]\lambda[/mm] =
> 7,5cm-1,5cm = 6cm, berechnet. So weit so gut.

Damit und der Verschiebung zwischen den beiden Graphen kannst Du die Schwingungsdauer ermitteln. Sie beträgt 0,8s.

>  Für die Ausbreitungsgeschwindigkeit gilt dann plötzlich
> [mm]c=\lambda/t[/mm] = 3cm/0,2s = 15cm/s.

Nicht mit den vorliegenden Daten. Nach Deiner Beschreibung ist die Welle doch in 0,2s gerade 1,5cm weitergekommen.

Also ist [mm] c=\bruch{\Delta x}{\Delta t}=\bruch{1,5 cm}{0,2 s}=7,5\bruch{cm}{s}=\bruch{\lambda}{T}=\bruch{6 cm}{0,8 s} [/mm]

Schau Dir mal []dieses Beispiel an. Unten auf der Seite ist eine animierte Grafik, die man erst starten muss. Dazu gibts unter der Grafik entsprechende Aufgaben und einen Link zu den Lösungen.

> Warum ist [mm]\lambda[/mm] vorher
> 6cm und nun plötzlich 3cm? Ist das also gar keine absolute
> Größe?

Doch, [mm] \lambda [/mm] ist eine absolute Größe, sofern keine Frequenzmodulation vorliegt. ;-)
Für die Wellenausbreitung ist aber davon auszugehen, dass jede einzelne Welle ab dem Verlassen des Erregers (bzw. "Senders") ihre Form beibehält, und damit sowohl die Schwingungslänge [mm] \lambda [/mm] als auch die Schwingungsdauer $T$.

Trotzdem kann ich die Dir vorliegende Lösung so nicht nachvollziehen, siehe oben.

Grüße
reverend


Bezug
                
Bezug
harmonische Wellen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:39 Fr 16.11.2012
Autor: Infostudent

Mein Fehler, die Welle im zweiten Graph ist nicht um 1,5cm sondern um 3cm verschoben. Daher auch [mm] \lambda [/mm] = 3cm in der Formel zur Berechnung von c. Trotzdem benutzt man 1. bei der Berechnung der Wellenlänge und 2. der Berechnung von c mMn unterschiedliche [mm] \lambda, [/mm] kennzeichnet diese aber als ein und dieselbe Größe.
Im ersten Fall bezeichnet [mm] \lambda [/mm] die Distanz zwischen zwei Oszillatoren, die in derselben Phase schwingen, im zweiten Fall betrachtet man die zeitliche Entwicklung der Welle und dort ist [mm] \lambda [/mm] dann nur halb so groß wie vorher. Welches ist denn nun das "richtige" [mm] \lambda? [/mm]

Bezug
                        
Bezug
harmonische Wellen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:53 Fr 16.11.2012
Autor: reverend

Hallo nochmal,

> Mein Fehler, die Welle im zweiten Graph ist nicht um 1,5cm
> sondern um 3cm verschoben.

Ok, das erklärt die Diskrepanz.

> Daher auch [mm]\lambda[/mm] = 3cm in der
> Formel zur Berechnung von c.

Das heißt auch [mm] \lambda? [/mm] Das ist äußerst ungeschickt. Ich habe darum [mm] $\Delta [/mm] x$ geschrieben.

> Trotzdem benutzt man 1. bei
> der Berechnung der Wellenlänge und 2. der Berechnung von c
> mMn unterschiedliche [mm]\lambda,[/mm] kennzeichnet diese aber als
> ein und dieselbe Größe.

Ich habe ja das Buch bzw. Skript o.ä. nicht vorliegen, kann das also nicht beurteilen. Wenn aber tatsächlich beide Male [mm] \lambda [/mm] verwendet wird, so ist das schlicht falsch.

>  Im ersten Fall bezeichnet [mm]\lambda[/mm] die Distanz zwischen
> zwei Oszillatoren, die in derselben Phase schwingen, im
> zweiten Fall betrachtet man die zeitliche Entwicklung der
> Welle und dort ist [mm]\lambda[/mm] dann nur halb so groß wie
> vorher. Welches ist denn nun das "richtige" [mm]\lambda?[/mm]  

Das kann man sich ja zurechtdefinieren.
Üblich allerdings ist es, [mm] \lambda [/mm] für die Distanz zweier gleicher Phasen zu nehmen, also eine Periodenlänge der (wie auch immer gearteten periodischen) Schwingung; so auch auf der Seite, die ich Dir vorhin verlinkt habe.

Grüße
reverend


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]