matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenhyperbolische Fkt.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Funktionen" - hyperbolische Fkt.
hyperbolische Fkt. < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

hyperbolische Fkt.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:44 Di 03.07.2007
Autor: bjoern.g

Aufgabe
hallo habe hier cosh²(x)-sinh²(x)=1 für alle x€R

sinh x ->  1/2 * [mm] (e^x [/mm] - e^-x)
cosh x->  1/2 * [mm] (e^x [/mm] + e^-x)

bekäme da am schluss raus am schluss [mm] 1(e^-x)^2 [/mm] = 1 raus stimmt dat

??? wenn ich binom anwende und das ausrechne

aber wieso gilt das jetzt

        
Bezug
hyperbolische Fkt.: Antwort
Status: (Antwort) fertig Status 
Datum: 13:55 Di 03.07.2007
Autor: schachuzipus

Hallo Björn,


wieso soll  denn [mm] \left(e^{-x}\right)^2=1 [/mm] sein??

wenn du die 1. bzw 2. binom. Formel anwendest und die Differenz bildest, heben sich doch genau die [mm] \left(e^x\right)^2 [/mm] und die [mm] \left(e^{-x}\right)^2 [/mm] weg und es bleibt [mm] \frac{1}{4}\cdot{}4\underbrace{e^xe^{-x}}_{=1}=\frac{1}{4}\cdot{}4=1 [/mm]

Gruß

schachuzipus

Bezug
                
Bezug
hyperbolische Fkt.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:31 Di 03.07.2007
Autor: bjoern.g

wie kommst du denn da auf die lösung ?


( 1/2 [mm] e^x [/mm] - 1/2 e^-x )² = 1/4 [mm] (e^x)² [/mm] - 2*1/4 (e^-x)² + 1/4 [mm] (e^x)^2 [/mm]



( 1/2 [mm] e^x [/mm] + 1/2 e^-x )² = 1/4 [mm] (e^x)² [/mm] + 2*1/4 (e^-x)² + 1/4 [mm] (e^x)^2 [/mm]


oder stimmt das so nicht ?? wie kommt dann denn das raus was du raus hast




Bezug
                        
Bezug
hyperbolische Fkt.: Antwort
Status: (Antwort) fertig Status 
Datum: 15:52 Di 03.07.2007
Autor: schachuzipus

Hallo Björn,

wo hast du die [mm] e^{-x} [/mm] gelassen und was ist mit den gemischten Termen [mm] e^xe^{-x} [/mm] ??

> wie kommst du denn da auf die lösung ?
>  
>
> ( 1/2 [mm]e^x[/mm] - 1/2 e^-x )² = 1/4 [mm](e^x)²[/mm] - 2*1/4 (e^-x)² + 1/4
> [mm](e^x)^2[/mm] [notok]
>  
>
>
> ( 1/2 [mm]e^x[/mm] + 1/2 e^-x )² = 1/4 [mm](e^x)²[/mm] + 2*1/4 (e^-x)² + 1/4
> [mm](e^x)^2[/mm] [notok]
>  
>
> oder stimmt das so nicht ?? wie kommt dann denn das raus
> was du raus hast
>  
>
>  


[mm] \cosh^2(x)=\frac{1}{4}\left(\left(e^x\right)^2+2e^xe^{-x}+\left(e^{-x}\right)^2\right) [/mm]

und [mm] \sinh^2(x)=\frac{1}{4}\left(\left(e^x\right)^2-2e^xe^{-x}+\left(e^{-x}\right)^2\right) [/mm]

Also [mm] \cosh^2(x)-\sinh^2(x)=\frac{1}{4}\left(\red{\left(e^x\right)^2}\green{+2e^xe^{-x}}\blue{+\left(e^{-x}\right)^2}\red{-\left(e^x\right)^2}\green{+2e^xe^{-x}}\blue{-\left(e^{-x}\right)^2}\right)=\frac{1}{4}4e^xe^{-x}=1 [/mm]

Gruß

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]