matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis-Sonstigesirrationale Zahlen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Analysis-Sonstiges" - irrationale Zahlen
irrationale Zahlen < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

irrationale Zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:47 Sa 03.10.2009
Autor: Giraffe

Aufgabe
Für rat.Z. habe ich hier in meinen persönl. Unterlagen stehen:
Quotienten 1/2 u. deren Ergebnis 0,5
Es gibt 3 Sorten:
6/1 oder 7/7 (keine Kommastelle)
1/4 = 0,25 bestimmte Anz. v. Kommastellen
1/3 = endlose period. Kommastellen

Nun begegnet mir zum ersten mal der Begriff "irrationale Zahlen". Den habe ich hier im Mathe-Lexikon nachgeschlagen u. nun ist mir leider die Abgrenzung zu rat.Z. nicht mehr klar.

Lexikon sagt zu irrat. Z.:
unendliche, nichtperiodische Dezimalbrüche.
Diese Aussage stelle ich mir so vor:
unendlich heißt ohne Ende, also unbest. Anz. v. Kommastellen, ja gutes Bsp. pi
Aber was bitte schön ist ein nicht-periodischer Dezimalbruch?
Das wäre z.B. 1/4 = 0,25
nicht period. u. ein Dezimalbruch
Aber was nun?
rat. od. irrat.???
Kann ja nun nicht zu beiden gezählt werden.

Ich bin heute verärgert darüber, dass ich Probleme lösen will (was sind irrat. Z.) u. sich genau dabei dann aber wieder neue Fragen stellen.  Anders: Dass man nicht mal einfach schnell etw. klären kann.
Ich hoffe deshalb sehr, dass es eine kurze schmerzlose klärende Antw. gibt, die ALLES klärt.
Vorab schon mal vielen DANK

Für rat.Z. habe ich hier in meinen persönl. Unterlagen stehen:
Quotienten 1/2 u. deren Ergebnis 0,5
Es gibt 3 Sorten:
6/1 oder 7/7 (keine Kommastelle)
1/4 = 0,25 bestimmte Anz. v. Kommastellen
1/3 = endlose period. Kommastellen

Nun begegnet mir zum ersten mal der Begriff "irrationale Zahlen". Den habe ich hier im Mathe-Lexikon nachgeschlagen u. nun ist mir leider die Abgrenzung zu rat.Z. nicht mehr klar.

Lexikon sagt zu irrat. Z.:
unendliche, nichtperiodische Dezimalbrüche.
Diese Aussage stelle ich mir so vor:
unendlich heißt ohne Ende, also unbest. Anz. v. Kommastellen, ja gutes Bsp. pi
Aber was bitte schön ist ein nicht-periodischer Dezimalbruch?
Das wäre z.B. 1/4 = 0,25
nicht period. u. ein Dezimalbruch
Aber was nun?
rat. od. irrat.???
Kann ja nun nicht zu beiden gezählt werden.

Ich bin heute verärgert darüber, dass ich Probleme lösen will (was sind irrat. Z.) u. sich genau dabei dann aber wieder neue Fragen stellen.  Anders: Dass man nicht mal einfach schnell etw. klären kann.
Ich hoffe deshalb sehr, dass es eine kurze schmerzlose klärende Antw. gibt, die ALLES klärt.
Vorab schon mal vielen DANK

        
Bezug
irrationale Zahlen: Erklärung
Status: (Antwort) fertig Status 
Datum: 19:53 Sa 03.10.2009
Autor: Loddar

Hallo Giraffe!


Ganz kurz und knapp:

Die Menge der rationalen Zahlen sind alle Zahlen, welche man durch einen Bruch darstellen kann.

Irrationale Zahlen lassen sich nicht exakt durch einen Bruch darstellen wie z.B. [mm] $\pi$ [/mm] oder [mm] $\wurzel{2}$ [/mm] .


Gruß
Loddar


Bezug
                
Bezug
irrationale Zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:14 Sa 03.10.2009
Autor: Giraffe

ja, das war präzise u. aber leider habe ich trotzdem nochmal ne Nachfrage:
Ich verstehe irrat. Z. nun so:
Es gibt exakt nur eine einzige Sorte u. dass sind Dezimalzahlen, die ohne Ende Nachkommastellen haben, also eine endlose Anz. v. Kommastellen (ausgenom. Perioden, die gehören zu den rat.Z.)
Fertig.
So?

Bezug
                        
Bezug
irrationale Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:29 Sa 03.10.2009
Autor: ChopSuey

Hallo Giraffe,

> ja, das war präzise u. aber leider habe ich trotzdem
> nochmal ne Nachfrage:
>  Ich verstehe irrat. Z. nun so:
>  Es gibt exakt nur eine einzige Sorte u. dass sind
> Dezimalzahlen, die ohne Ende Nachkommastellen haben, also
> eine endlose Anz. v. Kommastellen (ausgenom. Perioden, die
> gehören zu den rat.Z.)
>  Fertig.
>  So?


Ich kann Dir in der Hinsicht nicht so ganz folgen, aber ich würde mir irrationale Zahlen eben so vorstellen, wie Loddar sie bereits beschrieb.

Die Idee, sich das mit den Nachkommastellen oder so zu merken, fände ich persönlich sehr unbefriedigend. Zumal Du ja erstmal nicht sagen kannst, ob die Nachkommastellen nicht bei der 100000. Stelle einfach abbrechen.

Schau doch mal hier: []Euklids Beweis f. Wurzel(2) irrational und hier []Wurzel aus 2

Wenn Du den Beweis verstehst, kriegst du sicher ein besseres Gefühl für irrationale Zahlen.

Desweiteren finden sich in den Artikeln auch nützliche Hinweise und Erklärungen zu den irrationalen Zahlen.

Es gibt viele Anekdoten aus der Antike über einen Schüler des Pythagoreischen Bunds, der aufgrund seiner Entdeckung einer Irrationalen Zahl von den Pythagoreern ermordet wurde.
In diesem Zusammenhang vielleicht auch ganz interessant zu wissen. Aber natürlich nicht notwendig. ;-)

Grüße
ChopSuey


Bezug
                        
Bezug
irrationale Zahlen: richtig verstanden
Status: (Antwort) fertig Status 
Datum: 20:36 Sa 03.10.2009
Autor: Loddar

Hallo Giraffe!


Wie bereits erwähnt: Deine Beschreibung ist etwas umständlich ... aber durchaus korrekt.


Gruß
Loddar


Bezug
                                
Bezug
irrationale Zahlen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:12 Sa 03.10.2009
Autor: Giraffe

uffs
gut.
Dann ist die Frage an dieser Stelle geklärt.
Beweis f. irrat. Z.?
Nein Danke, das kapiere ich doch gar nicht.
Wenn ich eines weiß, dann das.

DANKE euch beiden!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]