matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare Algebrairreduzible Polynome problem
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Lineare Algebra" - irreduzible Polynome problem
irreduzible Polynome problem < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

irreduzible Polynome problem: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 17:37 Mo 06.12.2004
Autor: wolverine2040

Hi Leute:

Hab hier eine Übungsaufgabe und ein kleines Problem mit den Begriffen:

Es sei K der Körper mit zwei Elementen. Geben Sie sämtliche irreduzible Polynome eines Grades kleiner gleich 3 in K[X] an.

Was genau sind nun irreduzible Polynome, das habe ich noch nicht so ganz verstanden und wie kann ich an diese Aufgabe herangehen?

Vielen Dank für Eure Hilfe



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
irreduzible Polynome problem: Lösung
Status: (Antwort) fertig Status 
Datum: 13:42 Di 07.12.2004
Autor: MixiMathMix

Zur Definition:

Die Ringelemente, die Teiler der 1 sind, heißen Einheiten von R. Sie sind genau die invertierbaren Elemente. Einheiten teilen alle anderen Elemente. Gilt a | b und b | a, dann heißen a und b zueinander assoziiert. a und b sind genau dann assoziiert, wenn es eine Einheit u gibt, so dass au=b.

Ist q keine Einheit, dann heißt q irreduzibel, falls q nicht als Produkt zweier Nicht-Einheiten darstellbar ist.


---

Wenn Du jetzt loslegts, mußt du beachten daz in [mm] \IZ/2\IZ [/mm] 1=-1 gilt, denn 1+1=2=0

Damit ist z. B. [mm] (x+1)(x+1)=x^2+2x+1=x^2+1, [/mm] also das Polynom [mm] x^2+1 [/mm] ist reduzibel, damit auch das identische Polynom [mm] x^2-1 [/mm] (denn -1=1!)

Viel Spaß

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]