matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebrakein ggT=>kein euklidischer R
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Algebra" - kein ggT=>kein euklidischer R
kein ggT=>kein euklidischer R < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

kein ggT=>kein euklidischer R: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:54 So 11.01.2015
Autor: MeineKekse

Hi, bei Wikipedia steht
All diesen Definitionsvarianten ist jedoch gemeinsam, dass in einem euklidischen Ring eine Division mit Rest und damit ein euklidischer Algorithmus zur Bestimmung des größten gemeinsamen Teilers (ggT) zweier Ringelemente möglich ist. Von dieser Eigenschaft ist der Name abgeleitet.


Als Beispiel wird genannt

Der Ring [mm] \IZ[\sqrt{-3}] [/mm] ist nicht euklidisch, da [mm] 2+2\sqrt{-3} [/mm] und 4 keinen ggT haben (zwei „maximale gemeinsame Teiler“ sind [mm] 1+\sqrt{-3} [/mm] und 2, die aber teilerfremd sind).


soweit so gut. Heißt, wenn zwei Elemente in einem Ring R keinen ggt haben geht der euklidische Algorithmus irgendwo schief und somit, kann R kein euklidischer Ring sein.

Meine Frage wo genau geht denn was schief beim euklidischen Algorithmus?

        
Bezug
kein ggT=>kein euklidischer R: Antwort
Status: (Antwort) fertig Status 
Datum: 02:06 Mo 12.01.2015
Autor: Schadowmaster


> Hi, bei Wikipedia steht
>  All diesen Definitionsvarianten ist jedoch gemeinsam, dass
> in einem euklidischen Ring eine Division mit Rest und damit
> ein euklidischer Algorithmus zur Bestimmung des größten
> gemeinsamen Teilers (ggT) zweier Ringelemente möglich ist.
> Von dieser Eigenschaft ist der Name abgeleitet.
>  
> Als Beispiel wird genannt
>  
> Der Ring [mm]\IZ[\sqrt{-3}][/mm] ist nicht euklidisch, da
> [mm]2+2\sqrt{-3}[/mm] und 4 keinen ggT haben (zwei „maximale
> gemeinsame Teiler“ sind [mm]1+\sqrt{-3}[/mm] und 2, die aber
> teilerfremd sind).
>  
> soweit so gut. Heißt, wenn zwei Elemente in einem Ring R
> keinen ggt haben geht der euklidische Algorithmus irgendwo
> schief und somit, kann R kein euklidischer Ring sein.
>  
> Meine Frage wo genau geht denn was schief beim euklidischen
> Algorithmus?

Guck dir mal im Wikipediaartikel die erste Variante der Definition an. Hier steht im Endeffekt, dass Division mit Rest ganz klassisch wie im Euklidischen Algorithmus durchführbar ist. Ist das nicht gegeben, kannst du den Algorithmus halt nicht ausführen, da du keine Anhaltspunkte hast, wie das $q$ und das $r$ zu wählen sind, da du nicht weißt, ob nun $g(r) < g(y)$ oder nicht.

Also es geht nicht etwas schief, es geht überhaupt nichts, weil der Euklidische Algorithmus ohne eine ordentliche Division mit Rest (eben über so eine euklidische Funkion) gar nicht ordentlich definiert ist.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]