matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und Reihenkonvergenzwert harmon. Reihe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Reihen" - konvergenzwert harmon. Reihe
konvergenzwert harmon. Reihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

konvergenzwert harmon. Reihe: beweis
Status: (Frage) beantwortet Status 
Datum: 00:12 Fr 06.11.2009
Autor: Kinghenni

Aufgabe
[mm] \bruch{\pi^2}{8}=\summe_{i=1,i ungerade}^{n}\bruch{1}{i^2} [/mm]

das wurde heut bei uns im seminar an die tafel geschrieben, natürlich wollte der prof auch direkt wissen: warum?
naja es hat meine neugier geweckt, aber den konvergenzwert einer reihe haben wir nie selbst bestimmt(eben nur auf konvergenz geprüft)
zb hatten wir [mm] \bruch{\pi^2}{6}=\summe_{i=1}^{n}\bruch{1}{i^2} [/mm]
hierzu hab ich was mit der  Riemannsche Zeta-Fkt gefunden:
http://de.wikipedia.org/wiki/Riemannsche_%CE%B6-Funktion
aber es scheint nur [mm] \summe_{i=1}^{n}\bruch{1}{i^k} [/mm] für alle [mm] k\in\IN [/mm] angeben zu können
eine idee von mir war noch es rückwärts anzugehen, das wallisprodukt besagt ja das [mm] \bruch{\pi}{2}=\bruch{2}{1}*\bruch{2}{3}*\bruch{4}{3}*\bruch{4}{5}...und [/mm] man sieht im nenner steht die summe der ungeraden quadratzahlen, aber damit kam ich trotzdem kein schritt weiter
hat hier irgendeiner eine idee?

        
Bezug
konvergenzwert harmon. Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 00:59 Fr 06.11.2009
Autor: pelzig

Betrachte die Fourierentwicklung der Funktion [mm] $$f(x)=\begin{cases}x&x\in(0,\pi)\\2\pi-x&x\in(\pi,2\pi)\end{cases}$$auf [/mm] dem Intervall [mm] $(0,2\pi)$. [/mm]

Gruß, Robert

Bezug
                
Bezug
konvergenzwert harmon. Reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:44 So 08.11.2009
Autor: Kinghenni

gibt es eventuell noch andere möglichkeiten?
Fourierentwicklung sagt mir nämlich nix


Bezug
                        
Bezug
konvergenzwert harmon. Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 19:54 So 08.11.2009
Autor: leduart

Hallo
Leider gibts keine einfache Herleitung dazu, irgendwie nicht so erstaunlich ,wenn [mm] \pi^2 [/mm] rauskommt. und Fourrierreihen kommen bestimmt noch!
Gruss leduart

Bezug
                                
Bezug
konvergenzwert harmon. Reihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:27 So 08.11.2009
Autor: Kinghenni

okay, danke ihr beiden
war ja auch nicht so wichtig

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]