matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-Funktionenkurvendis. e-funktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Exp- und Log-Funktionen" - kurvendis. e-funktion
kurvendis. e-funktion < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

kurvendis. e-funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:27 Di 20.11.2007
Autor: admir

hallo,

wir hatten vor längerer zeit eine kurvebdis. anhand von e-funktionen durchgeführt. die funktion lautet:

f(x)= 2x - [mm] e^x [/mm]
f'(x)= 2  - [mm] e^x [/mm]
f"(x)=    - [mm] e^x [/mm]
f'''(x)=   - [mm] e^x [/mm]

ich würde gerne wissen, wie man die Symmetrie des Graphen, Nullstele(n) und das verhalten für|x| unendlich rein FORMAL berechnet und erklärt.

wäre sehr nett, wenn mir jemand diese frage beantwortet.

DANKE IM VORRAUS
Gruß ADMIR

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
kurvendis. e-funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 20:11 Di 20.11.2007
Autor: Tyskie84

Hallo admir!

Nun zunächst zur Symmetrie:

f(-x)=f(x) bedeutet axialsymmetrie und
f(-x)=-f(x) bedeutet zentralymmetrie also punktysmmetrie :)

Versuch das mal auf deine funktion anzuwenden.

Nullstellen:
Wie sieht der Graph einer e-Funktion aus? Schnneidet er die x Achse? setzte [mm] 2x-e^{x} [/mm] = 0  

Grenzwert:

[mm] \limes_{x\rightarrow\infty} 2x-e^{x} [/mm]   welche regeln für den Limes kennst du...setzte immer größere werte für x ein und schau was passiert

Hinweis allgemein
[mm] \limes_{x\rightarrow\infty} a^{x} [/mm] = [mm] \infty [/mm] , [mm] \limes_{x\rightarrow - \infty} a^{x} [/mm] = 0 für a > 0 also streng monoton wachsend

0<a<1 streng monoton fallend [mm] \limes_{x\rightarrow\infty} a^{x} [/mm] = 0 und [mm] \limes_{x\rightarrow - \infty} a^{x} [/mm] = [mm] \infty [/mm]

Besitzt der Graph der Exponentialfunktion Wendepunkte oder Extrema? NEIN Der Graph geht doch immer durch den Punkt P(0,1)! Auch bei deiner Funktion? Nein bei deiner Funktion durch den Punkt P(0,-1) :)

Mit [mm] a=e^{ln a} [/mm] kann jede Exponentialfunktion auf die e Funktion zurückgeführt werden: y = [mm] a^{x} [/mm] = [mm] e^{x ln a} [/mm] (also mit streckung bzw stauchung des Graphen der e funktion)  

Also bei e Funktionen ist nicht viel zu diskutieren. das ist das schöne an ihnen :)

Gruß


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]