matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGeraden und Ebenenlage dreier ebenen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Geraden und Ebenen" - lage dreier ebenen
lage dreier ebenen < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lage dreier ebenen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:31 Sa 14.03.2009
Autor: noobo2

Hallo,
wenn ich drei Ebenen habe also
E1: x1+2x2+3x3= a
E2:x1+bx2+4x3=5
E3:x1+3x2+2x3=-5

und ich soll nun a und b so bestimmen, dass genau eine Lösugn hat und so, dass es undendlich viele Lösungen hat, wei komme ich da genau auf a und b ?
also ich kann das LGS im Taschenrechner ausrechnen, jedoch hilft mir das nicht weiter.
Damit es eien Lösugn gibt müssen sich alle in einem Punkt schneiden, damit es undendlich viele Lösungen gibt müssen entweder alle die schnittgerade gemeinsam haben oder alle identisch sein...kann mir jemand helfen?

        
Bezug
lage dreier ebenen: Hinweis
Status: (Antwort) fertig Status 
Datum: 21:46 Sa 14.03.2009
Autor: Loddar

Hallo noobo2!


Du hast die allgemeine Vorgehensweise bereits richtig beschrieben.

Bestimme zunächst aus 2 Ebenen (z.B. [mm] $E_1$ [/mm] und [mm] $E_3$) [/mm] eine Schnittgerade. Anschließend diese Gerade (mit Parameter $a_$) mit der letzten Gerade Ebene zum Schnitt bringen (also gleichsetzen).


Gruß
Loddar


Bezug
                
Bezug
lage dreier ebenen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:51 Sa 14.03.2009
Autor: noobo2

Hallo,
Aber bei E1 und E2 hab ich nicht nur a sondern auch b als paramter...??
Also ich hab mal die Matrix in derive eingegeben und es kommt halt immer im nenner der lösungsspalte der matrix b-1  kann ich daraus auf b schließen udn wenn ja warum??

Bezug
                        
Bezug
lage dreier ebenen: verschrieben
Status: (Antwort) fertig Status 
Datum: 21:55 Sa 14.03.2009
Autor: Loddar

Hallo noobo!


> was für eine letzte Gerade meinst du denn? meinst du
> vielleicht die letzte ebene?

[ok] Genau, da hatte ich mich verschrieben (habe es nunmehr korrigiert).


> ich habe aber doch parameter a und b
>  gibt es keinen anderen weg das shcon davor zu sehen?

Nein, da sehe ich keinen anderen Weg als Rechnen ...


Gruß
Loddar



Bezug
                        
Bezug
lage dreier ebenen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:04 Sa 14.03.2009
Autor: MathePower

Hallo noobo2,

> Hallo,
>  Aber bei E1 und E2 hab ich nicht nur a sondern auch b als
> paramter...??


Ja.


>  Also ich hab mal die Matrix in derive eingegeben und es
> kommt halt immer im nenner der lösungsspalte der matrix b-1
>  kann ich daraus auf b schließen udn wenn ja warum??  


Nun, wenn [mm]b-1 \not= 0[/mm] ist, dann ist das Gleichungssystem eindeutig lösbar.

Ist [mm]b-1=0[/mm], so kommt es auf die entsprechende rechte Seite an,
ob das Gleichungssystem lösbar ist oder nicht.


Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]