matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysislebesgue-integrierbar
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis" - lebesgue-integrierbar
lebesgue-integrierbar < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lebesgue-integrierbar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:23 Mo 15.08.2005
Autor: terrier

ich hab eine frage zu der definition der lebesgue integration,bzw unserer definition davon.
wir haben sie über ober- und unterintegral eingeführt.
dabei ist das oberintegral von f das infimum der menge des integrale über  fkt.nen g, für die gilt:g ist aus der menge aller fkt. [mm] g:R^n->R [/mm] mit der eigenschaft:es gibt monoton steigende folge von fktnen mit kompakten träger deren supremum die fkt g ist.und es gilt g [mm] \ge [/mm] f .
nun meine frage:
versteh ich das richtig, das g als supremum einer monoton steigenden fkt.nenfolge für alle x aus dem träger g(x) [mm] \ge [/mm] f(x) erfüllt, und das die monotonie sich nur auf g bezieht,d.h. das wir eine fkt über eine andere approximieren,deren integral minimal grösser ist als das der fkt f ?
habe da am anfang einen wiederspruch gesehen, und dachte an einen druckfehler, aber so müsste es doch stimmen.


        
Bezug
lebesgue-integrierbar: Antwort
Status: (Antwort) fertig Status 
Datum: 12:13 Mo 15.08.2005
Autor: Julius

Hallo terrier!

Zunächst einmal finde ich diesen Zugang zum Lebesgue-Integral eher ungewöhnlich (ich kenne eher die Einführung, wie sie im Bauer (Maßtheorie) steht), aber ich habe mir das jetzt mal []hier (Seite 84) angeschaut.

> ich hab eine frage zu der definition der lebesgue

> integration,bzw unserer definition davon.
>  wir haben sie über ober- und unterintegral eingeführt.
>  dabei ist das oberintegral von f das infimum der menge des
> integrale über  fkt.nen g, für die gilt:g ist aus der menge
> aller fkt. [mm]g:R^n->R[/mm] mit der eigenschaft:es gibt monoton
> steigende folge von fktnen mit kompakten träger deren
> supremum die fkt g ist.und es gilt g [mm]\ge[/mm] f .
>  nun meine frage:
>  versteh ich das richtig, das g als supremum einer monoton
> steigenden fkt.nenfolge für alle x aus dem träger g(x) [mm]\ge[/mm]
> f(x) erfüllt, und das die monotonie sich nur auf g
> bezieht,d.h. das wir eine fkt über eine andere
> approximieren,deren integral minimal grösser ist als das
> der fkt f ?

Ich denke du meinst es richtig. Wir haben hier zwei Grenzübergänge. Wir nehmen also eine Funktion $g: [mm] \IR^n \to \IR$ [/mm] mit $g [mm] \ge [/mm] f$, die sich als Grenzwert einer monoton steigenden Folge von Funktionen mit kompaktem Träger darstellen lässt. Von diesem $g$ können wir (erster Grenzübergang) das Lebesgue-Integral definieren (das wurde vorher im Skript, sicherlich auch in eurem, erledigt). Das machen wir nun (theoretisch) mit jedem solchen $g [mm] \ge [/mm] f$. Auf diese Art und Weise erhalten wir eine ganze Familie von Integralen (bzw. eine Familie reeller Zahlen, nämlich von den Auswertungen des Integrals). Und aus dieser Familie reeller Zahlen bilden wir das Infimum und nennen diesen Wert das Oberintegral von $f$. Dies ist dann der zweite Grenzübergang.

Die Sache mit dem "minimal größer" kann man so nicht stehenlassen. Es kann ja sein, dass $f$ sich selber darstellen lässt als Supremum einer monoton steigenden Folge von Funktionen mit kompaktem Träger, und dann können wir ja sogar $g=f$ wählen. Also solltest du vorichtig sein mit solchen Aussagen. Richtig ist, dass man das Integral von $f$ als Infimum von Integralen von Funktionen $g$ definiert, die punktweise größer oder gleich $f$ sind und die sich als Supremum einer monoton steigenden Folge von Funktionen mit kompaktem Träger darstellen lassen. Nicht mehr, aber auch nicht weniger... ;-)

Viele Grüße
Julius


Bezug
                
Bezug
lebesgue-integrierbar: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:28 Mo 15.08.2005
Autor: terrier

das mit der ausdrucksweise bei minimal ist richtig.ich meinte aber das gleiche wie du,das sie natürlich auch gleich sein kann.
danke für deine antwort.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]