matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Abbildungenlin. Abb mit versch. R
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Abbildungen" - lin. Abb mit versch. R
lin. Abb mit versch. R < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lin. Abb mit versch. R: lin. Abb in der Ebene
Status: (Frage) beantwortet Status 
Datum: 15:08 Fr 30.01.2009
Autor: vera12

Aufgabe
Betrachten sie in der Ebene die Abbildung:
R²-->R²
(x1,x2)-->(2-x1,2-x2)
1.Ist dies eine lineare Abbildung?
2.Beschreiben sie die in geometrischen Begriffen
3. Koordinanten der zugehörigen Matrix A.


Hallo,
hätte mir hier jemand ein paar Tipps. Danke

        
Bezug
lin. Abb mit versch. R: Definition
Status: (Antwort) fertig Status 
Datum: 15:16 Fr 30.01.2009
Autor: Roadrunner

Hallo Vera,

[willkommenmr] !!


Hier wird schon etwas (mehr) Eigeninitiative erwartet (siehe auch unsere Forenregeln).


Für die 1. Teilaufgabe solltest Du die Definition einer []linearen Abbildung aufschreiben und anwenden.


Gruß vom
Roadrunner


Bezug
                
Bezug
lin. Abb mit versch. R: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:13 Fr 30.01.2009
Autor: vera12

Hallo,
hatte es mir schon vorher durchgelesen. Leider nicht sehr viel gebracht.
Muss ich nun beweisen das meine Abbildung sowohl homogen  als auch additiv ist.
Also f(x1+x2)= f(x1)+f(x2)
--> f(2-x1+2-x2)=f(2-x1) + f(2-x2)???


Bezug
                        
Bezug
lin. Abb mit versch. R: Antwort
Status: (Antwort) fertig Status 
Datum: 18:00 Fr 30.01.2009
Autor: angela.h.b.

Hallo,

[willkommenmr].


>  Muss ich nun beweisen das meine Abbildung sowohl homogen  
> als auch additiv ist.

Du mußt bedenken, daß die Elemente, auf welche die Abbildung f angewendet wird, Elemente des [mm] \IR^2 [/mm] sind, also 2-Tupel.

Du mußt  also ausrechnen,

ob [mm] f((x_1, x_2) [/mm] + [mm] (y_1,y_2)) [/mm] dassselbe ergibt wie  [mm] f((x_1, x_2)) [/mm] + [mm] f((y_1,y_2)) [/mm] .

Für die Multiplikation dann entsprechend.

Gruß v. Angela

>  Also f(x1+x2)= f(x1)+f(x2)
>  --> f(2-x1+2-x2)=f(2-x1) + f(2-x2)???

>  


Bezug
                                
Bezug
lin. Abb mit versch. R: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:19 Fr 30.01.2009
Autor: vera12

Hallo,
Jedoch hätte ich noch eine Frage. Was ist mein y1,y2 in diesem Fall?
x1,x2 sind mir gegeben. Soll ich nun die gleichen Elemente auch für y1,y2 anwenden?
Vielen dank im Voraus

Bezug
                                        
Bezug
lin. Abb mit versch. R: Antwort
Status: (Antwort) fertig Status 
Datum: 18:24 Fr 30.01.2009
Autor: angela.h.b.


> Hallo,
>  Jedoch hätte ich noch eine Frage. Was ist mein y1,y2 in
> diesem Fall?
>  x1,x2 sind mir gegeben.

hallo,

die [mm] y_i [/mm] sind Variable wie auch die [mm] x_i. [/mm]


denk doch mal an ganz normale reelle Funktionen, z.b.  f(x)= x²+2.
Was ist dann f(y)?  [mm] f(y)=y^2+2. [/mm]

Und f(x+y)= [mm] (x+y)^2+2. [/mm]

Analog geht das in deinem Fall auch, bloß daß Deine Funktion aus dem [mm] \IR^2 [/mm] in den [mm] \IR^2 [/mm] abbildet.

Gruß v. Angela



Soll ich nun die gleichen Elemente

> auch für y1,y2 anwenden?
>  Vielen dank im Voraus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]