matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra / Vektorrechnunglineare Erweiterung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra / Vektorrechnung" - lineare Erweiterung
lineare Erweiterung < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lineare Erweiterung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:28 Mi 23.11.2011
Autor: hula

Guten Abend!

Ich habe folgende Frage:

Wenn ich einen Vektorraum $ V $ habe, nicht zwingend endlich dimensional, und einen Teilraum $ M $, sowie eine lineare Abbildung $ f: M [mm] \to [/mm] V $. Wie kann ich diese Abbildung linear fortsetzen?
Ich wäre sehr an einem Beweis interessiert. Falls es diesen online gibt, bin ich auch für eine Referenz dankbar.

greetz

hula

        
Bezug
lineare Erweiterung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:40 Mi 23.11.2011
Autor: leduart

Hallo
geht es nicht etwas konkreter? Warum gilt deine Abb. nicht auf ganz V?
Gruss leduart

Bezug
                
Bezug
lineare Erweiterung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:57 Mi 23.11.2011
Autor: hula

Naja, weil sie halt nur auf einem Teilraum definiert ist. Das ganze spielt in einem Beweis, in dem nichts konkret gegeben ist! Es geht um folgenden Satz

Seien $ [mm] E_1, E_2, E_3 [/mm] $ Vektorräume, $ f: [mm] E_1 \to E_3 [/mm] , [mm] g:E_1 \to E_2 [/mm] $ lineare Abbildungen. Dann existiert eine lineare Abbildung $ h: [mm] E_2 \to E_3 [/mm] $ mit f(x)= h(g(x)) genau dann wenn $ [mm] g^{-1}(0) \subset f^{-1}(0)$. [/mm]
Den Beweis verstehe ich, für die eine Richtung definiert man die Abbildung $ h: [mm] g(E_1) \to E_3 [/mm] $ nach $ h(g(x)) := f(x) $. Zeigt das dies wohldefiniert ist etc, und dann steht am Schluss, wie oben erwähnt: Extend $ h $ to a linear map on $ [mm] E_2 [/mm] $.
Nun will ich wissen, wieso das geht, resp. wie man das macht. Wie gesagt, die Räume müssen nicht endlich dimensional sein.


greetz

hula

Bezug
        
Bezug
lineare Erweiterung: Antwort
Status: (Antwort) fertig Status 
Datum: 07:05 Do 24.11.2011
Autor: fred97


> Guten Abend!
>  
> Ich habe folgende Frage:
>
> Wenn ich einen Vektorraum [mm]V[/mm] habe, nicht zwingend endlich
> dimensional, und einen Teilraum [mm]M [/mm], sowie eine lineare
> Abbildung [mm]f: M \to V [/mm]. Wie kann ich diese Abbildung linear
> fortsetzen?
>  Ich wäre sehr an einem Beweis interessiert. Falls es
> diesen online gibt, bin ich auch für eine Referenz
> dankbar.
>  

Verschaffe Dir einen Komplementärraum zu M, also einen Unterraum N von V mit

                 $V=M [mm] \oplus [/mm] N$

Definiere $h:V [mm] \to [/mm] V$ wie folgt: ist v [mm] \in [/mm] V , so gibt es eindeutig bestimmte x [mm] \in [/mm] M und y [mm] \in [/mm] N mit v=x+y.

                setze  h(v):=f(x).

Dann ist h linear und es ist f=h auf M.

FRED

> greetz
>  
> hula


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]