matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare Algebralineare Unabhängigkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Lineare Algebra" - lineare Unabhängigkeit
lineare Unabhängigkeit < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lineare Unabhängigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:20 Do 17.05.2007
Autor: superstar

Aufgabe
Überprüfen Sie folgende Systeme von Vektoren des [mm] R^3 [/mm] auf lineare Abhängigkeit bzw. Unabhängigkeit.
a) (1,2,3); (4,5,6); (6,9,12)
b) (1, [mm] \alpha [/mm] ,0); ( [mm] \alpha [/mm] ,1,0); (0, [mm] \alpha [/mm] ,1) in Abhängigkeit des Parameters [mm] \alpha \in [/mm] R.

Hallo,
zu a) Mein Ergebnis bei dieser Aufgabe ist, dass [mm] \lambda [/mm] 1 und [mm] \lambda [/mm] 2 gleich 0 sind und [mm] \lambda [/mm] 3 frei wählbar. Meine Frage ist nun, ist das System deshalb linear abhängig oder nicht?
zu b) reicht die Fallunterscheidung [mm] \alpha [/mm] =0 und [mm] \alpha \not= [/mm] 0???
Danke

        
Bezug
lineare Unabhängigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 16:34 Do 17.05.2007
Autor: schachuzipus

Hallo superstar


> zu a) Mein Ergebnis bei dieser Aufgabe ist, dass [mm]\lambda[/mm] 1
> und [mm]\lambda[/mm] 2 gleich 0 sind und [mm]\lambda[/mm] 3 frei wählbar.
> Meine Frage ist nun, ist das System deshalb linear abhängig
> oder nicht?

Na, wenn die Rechnung simmt, wähle doch zB [mm] \lambda_3=9 [/mm]
Dann haste doch den Nullvektor linear aus den 3 Vektoren kombiniert und es sind nicht alle Koeffizienten [mm] \lambda_1,\lambda_2,\lambda_3 [/mm] =0, also ist das System....

zu b) reicht die Fallunterscheidung [mm]\alpha[/mm] =0 und [mm]\alpha \not=[/mm]

> 0???

Ich denke nicht, wenn du die "normale" LK ansetzt, bekommst du - wenn ich das richtig sehe, beim Auflösen des LGS eine Bedingung für [mm] \alpha [/mm] heraus

Setz einfach mal an und rechne, dann siehste das schon ;-)

>  Danke


Jo Gruß

schachuzipus


Bezug
                
Bezug
lineare Unabhängigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:55 Do 17.05.2007
Autor: superstar

Danke für deine Antwort.
zu a) danke für den Tipp, hat mir sehr weitergeholfen
zu b) ich zeige dir mal meinen Lösungsweg:

I) [mm] \lambda_{1} [/mm] + [mm] \alpha \lambda_{2} [/mm] +0 [mm] \lambda_{3}=0 [/mm]
II) [mm] \alpha \lambda_{1} +\lambda_{2} [/mm] + [mm] \alpha \lambda_{3} [/mm] =0
III)          [mm] \lambda_{3}= [/mm] 0

I) [mm] \lambda_{1} +\alpha \lambda_{2}= [/mm] 0
II) [mm] \alpha \lambda_{1}+ \lambda_{2}+ \alpha [/mm] 0=0
III) [mm] \alpha \lambda_{1} +\lambda_{2}= [/mm] 0

I) [mm] \lambda_{1} [/mm] = - [mm] \alpha \lambda_{2} [/mm]

in III) eingesetzt [mm] \alpha [/mm] ( - [mm] \alpha \lambda_{2}) [/mm] + [mm] \lambda_{2}=0 [/mm]

[mm] -\alpha [/mm] ^2 [mm] \lambda_{2} [/mm] + [mm] \lambda_{2}= [/mm] 0

[mm] \lambda_{2} [/mm] (1- [mm] \alpha^2)= [/mm] 0

und wie geht es jetzt weiter?




Bezug
                        
Bezug
lineare Unabhängigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 17:04 Do 17.05.2007
Autor: schachuzipus

Hallo superstar,

>  
> I) [mm]\lambda_{1}[/mm] + [mm]\alpha \lambda_{2}[/mm] +0 [mm]\lambda_{3}=0[/mm]
>  II) [mm]\alpha \lambda_{1} +\lambda_{2}[/mm] + [mm]\alpha \lambda_{3}[/mm]
> =0
>  III)          [mm]\lambda_{3}=[/mm] 0
>
> I) [mm]\lambda_{1} +\alpha \lambda_{2}=[/mm] 0
>  II) [mm]\alpha \lambda_{1}+ \lambda_{2}+ \alpha[/mm] 0=0
>  III) [mm]\alpha \lambda_{1} +\lambda_{2}=[/mm] 0
>  
> I) [mm]\lambda_{1}[/mm] = - [mm]\alpha \lambda_{2}[/mm]
>  
> in [mm] \red{II}) [/mm] eingesetzt [mm]\alpha[/mm] ( - [mm]\alpha \lambda_{2})[/mm] +
> [mm]\lambda_{2}=0[/mm]
>  
> [mm]-\alpha[/mm] ^2 [mm]\lambda_{2}[/mm] + [mm]\lambda_{2}=[/mm] 0
>  
> [mm]\lambda_{2}[/mm] (1- [mm]\alpha^2)=[/mm] 0 [ok]

Nun, was ist denn los, wenn [mm] 1-\alpha^2=0 [/mm] ist und was, wenn [mm] 1-\alpha^2\ne [/mm] 0 ist?


>  
> und wie geht es jetzt weiter?

Du bist fast am Ziel ;-)

Und Gas ;-)

LG

schachuzipus

Bezug
                                
Bezug
lineare Unabhängigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:23 Do 17.05.2007
Autor: superstar

  
> Nun, was ist denn los, wenn [mm]1-\alpha^2=0[/mm] ist und was, wenn
> [mm]1-\alpha^2\ne[/mm] 0 ist?

[mm]1-\alpha^2=0[/mm] , dann ist [mm] \lambda [/mm] = 0

und wenn [mm]1-\alpha^2\ne[/mm] 0 , dann ist [mm] \lambda [/mm] auch gleich 0

oder vertue ich mich da??? dann wäre das System in jeden Fall doch lin unabhängig, oder???? LG

Bezug
                                        
Bezug
lineare Unabhängigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 17:39 Do 17.05.2007
Autor: schachuzipus

Nää,

Obacht ;-)

Wenn [mm] 1-\alpha^2=0 [/mm] ist, also [mm] \alpha=\pm1. [/mm]

Dann ist [mm] (1-\alpha^2)\cdot{}\lambda_2=0 [/mm] für [mm] \underline{jedes beliebige} \lambda_2 [/mm] ,also auch

insbesondere für [mm] \lambda_2\ne [/mm] 0.

In diesem Falle wären die Vektoren also ....


Wenn aber [mm] \alpha\ne\pm1 [/mm] ist, dann folgt aus [mm] (1-\alpha^2)\lambda_2=0 [/mm] notwendigerweise [mm] \lambda_2=0, [/mm] denn ein Produkt ist Null,....

Also mit [mm] \lambda_2=0\Rightarrow \lambda_1=... [/mm]

Also ist das System linear.....


Ok?


LG

schachuzipus

Bezug
        
Bezug
lineare Unabhängigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 17:15 Do 17.05.2007
Autor: leduart

Hallo
bei a) musst du was falsch gemacht haben WENN [mm] \lambda_1=0 [/mm] und [mm] \lambda_2=0 [/mm] folgt garantiert auch [mm] \lambda_3=0! [/mm]
ich hab raus [mm] \lambda_1=2\lambda_2 \lambda_3=-\lambda_2, [/mm] d.h. du kannst ein [mm] \lambda [/mm] beliebig wählen, die anderen liegen dann fest. d.h. die Vektoren sind lin. abhängig, aber an deiner Rechng ist was fausl!
Gruss leduart

Bezug
                
Bezug
lineare Unabhängigkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:29 Do 17.05.2007
Autor: superstar

Vielen Dank für deinen Tipp! Habe jetzt das gleiche wie du raus!!! LG

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]