matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-Funktionenlogarithmusgleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Exp- und Log-Funktionen" - logarithmusgleichung
logarithmusgleichung < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

logarithmusgleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:00 Mo 10.03.2014
Autor: highlandgold

hallo,

ich habe die gleichung :

ln(x+3) - ln(x-3) = 2

ln(x+3)/ln(x-3) =2

(x+3)/(x-3) =ehoch2  sind diese Schritte richtig??

wie geht es dann weiter?

Bitte um rückschrift!

Danke

lg

        
Bezug
logarithmusgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 23:05 Mo 10.03.2014
Autor: Richie1401

Hallo,

> hallo,
>  
> ich habe die gleichung :
>  

Also du hast diese Gleichung und willst also die Lösungsmenge herausfinden. Gut.

> ln(x+3) - ln(x-3) = 2
>  
> ln(x+3)/ln(x-3) =2

Nein, das ist falsch. Es ist [mm] \ln(x+3)-\ln(x-3)=\ln\left(\frac{x+3}{x-3}\right) [/mm]

>  
> (x+3)/(x-3) =ehoch2  sind diese Schritte richtig??

Komischerweise stimmt das hier dann wieder.

>  
> wie geht es dann weiter?

Du hast nun also

   [mm] \frac{x+3}{x-3}=e^2 [/mm]

zu lösen. Nun erinnere dich mal an Bruchgleichungen. Multipliziere also meinetwegen zunächst mit dem Nenner. Und forme dann um.

>  
> Bitte um rückschrift!
>  
> Danke
>  
> lg


Bezug
                
Bezug
logarithmusgleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:14 Mo 10.03.2014
Autor: highlandgold


also ich geh jetzt von :

x+3/x-2=e²

nächster schritt:

x+3=e²(x-3)

nächster schritt:

x+3=e²x-e²3

und jetzt steh ich wieder an ! vorausgesetzt es ist richtig was ich gemacht habe?!

wie geht der nächste schritt?

Bezug
                        
Bezug
logarithmusgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 23:21 Mo 10.03.2014
Autor: Richie1401


>
> also ich geh jetzt von :
>  
> x+3/x-2=e²
>  
> nächster schritt:
>  
> x+3=e²(x-3)
>  
> nächster schritt:
>  
> x+3=e²x-e²3

Genau also [mm] x+3=e^2x-3e^2 [/mm]

Nun sortieren wir:

   [mm] x-e^2x=-3e^2-3 [/mm]

Nun klammern wir das x auf der linken Seite aus. Und wenn wir schon einmal dabei sind, so klammern wir auf der rechten Seite -3 aus.

   [mm] x(1-e^2)=-3(e^2+1) [/mm]

Also

   [mm] x=-3\frac{1+e^2}{1-e^2} [/mm]


Fertig :-)

>  
> und jetzt steh ich wieder an ! vorausgesetzt es ist richtig
> was ich gemacht habe?!
>  
> wie geht der nächste schritt?


Bezug
                                
Bezug
logarithmusgleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:26 Mo 10.03.2014
Autor: highlandgold

danke!!!

Bezug
        
Bezug
logarithmusgleichung: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 23:34 Mo 10.03.2014
Autor: highlandgold

Hallo,

ich habe die Gleichung:

ln(x+3)/ln(x-3)=2

erster schritt:

ln(x+3) - ln(x-3) = 2

nächster schritt delogarithmieren:

(x+3)-(x-3) = e²

nächster schritt:

x-3-x+3=e²

nächster schritt:

0 =e²  falsche aussage!?  


ist diese gleichung richtig gelöst?
  

bitte um rückschrift!

danke

lg

Bezug
                
Bezug
logarithmusgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 23:42 Mo 10.03.2014
Autor: rabilein1


> ich habe die Gleichung:
>  
> ln(x+3)/ln(x-3)=2
>  
> erster schritt:
>  
> ln(x+3) - ln(x-3) = 2


Ein Geteiltdurch-Zeichen durch ein Minus-Zeichen einfach so zu ersetzen, kann m.E. nicht richtig sein.


Bezug
                        
Bezug
logarithmusgleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:52 Mo 10.03.2014
Autor: highlandgold

wie funktioniert es dann wenn man den bruch auflöst?

Bezug
                                
Bezug
logarithmusgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 00:00 Di 11.03.2014
Autor: reverend

Hallo,

> wie funktioniert es dann wenn man den bruch auflöst?

Das habe ich gerade in einer Mitteilung geschrieben, in der Threaddarstellung etwas weiter unten.

Grüße
reverend

Bezug
                
Bezug
logarithmusgleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:57 Mo 10.03.2014
Autor: reverend

Hallo highlandgold,

> ich habe die Gleichung:
>  
> ln(x+3)/ln(x-3)=2

Ja, was ist denn nun eigentlich die Aufgabe? Diese hier oder die zuerst genannte? Oder sind das zwei Aufgaben?

Diese hier kann überführt werden in [mm] x+3=(x-3)^2 [/mm] und nur eine der beiden Lösungen dieser neuen Gleichung (nämlich x=1 und x=6) löst auch die ursprüngliche Gleichung.

Grüße
reverend

Bezug
                        
Bezug
logarithmusgleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:29 Di 11.03.2014
Autor: highlandgold

hallo,

das sind 2 verschiedene aufgaben !und es ist die lösungsmenge zu bestimmen.

wie kommt man auf $ [mm] x+3=(x-3)^2 [/mm] $ ?

Bezug
                                
Bezug
logarithmusgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:32 Di 11.03.2014
Autor: fred97

ln(x+3)/ln(x-3)=2
> hallo,
>  
> das sind 2 verschiedene aufgaben !und es ist die
> lösungsmenge zu bestimmen.
>  
> wie kommt man auf [mm]x+3=(x-3)^2[/mm] ?

Aus ln(x+3)/ln(x-3)=2 folgt

     [mm] ln(x+3)=2*ln(x-3)=ln((x-3)^2) [/mm]

FRED


Bezug
                                        
Bezug
logarithmusgleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:47 Di 11.03.2014
Autor: highlandgold

aso,die 2 aus 2*ln(x-3) wird zur hochzahl und dann wird delogarithmiert.

ausln(x+3)= ln((x-3)²) wird dann $ [mm] x+3=(x-3)^2 [/mm] $ .

hab ich das so richtig verstanden?

Bezug
                                                
Bezug
logarithmusgleichung: richtig verstanden
Status: (Antwort) fertig Status 
Datum: 11:54 Di 11.03.2014
Autor: Roadrunner

Hallo highlandgold!


Das hast Du so richtig verstanden. Dahinter stecken schlicht und ergreifend die MBLogarithmusgesetze.


Gruß vom
Roadrunner

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]