matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer Veränderlichenlokale Extrema bestimmen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Reelle Analysis mehrerer Veränderlichen" - lokale Extrema bestimmen
lokale Extrema bestimmen < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lokale Extrema bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:41 Mi 12.12.2012
Autor: s1mn

Aufgabe
Es sei f: [mm] \IR^{3} \to \IR [/mm] gegeben durch f(x) = [mm] x^{T} [/mm] A x + [mm] c^{T} [/mm] x, wobei A:= [mm] \pmat{ 3 & -1 & 2 \\ -1 & 4 & 0 \\ 2 & 0 & 2} [/mm] und c:= [mm] \vektor{-2 \\ 0 \\ -8}. [/mm]
Bestimmen Sie alle lokalen Extremstellen von f.

Hey Leute,

Ich weiss nicht was diese Woche mit meinem Ana Blatt los ist, aber iwie bekomm ich fast nichts hin -.-
Tutorium hat mir leider auch nicht wirklich was gebracht.

Ich muss hier schon erstmal die Matrix mit den 2 Vektoren multiplizeren, sowie  die 2 Vektoren ?!
Und [mm] x:=\vektor{x \\ y \\ z} [/mm] setzen z.B.

Dann habe ich ja f(x,y,z) = (x,y,z)  [mm] \pmat{ 3 & -1 & 2 \\ -1 & 4 & 0 \\ 2 & 0 & 2} \vektor{x \\ y \\ z} [/mm] + (-2 0 -8) [mm] \vektor{x \\ y \\ z} [/mm]

Bekomme dann als Funktion am Ende:
f(x,y,z) = [mm] 3x^{2} [/mm] + [mm] 4y^{2} [/mm] + [mm] 2z^{2} [/mm] - 2xy - 2x -8z

dann abgeleitet:
f'(x,y,z) = (6x-2y-2,  8y-2x, 4z-8)

f'(x,y,z) nullsetzen:
x = [mm] \bruch{4}{11} [/mm]
y = [mm] \bruch{1}{11} [/mm]
z = 2

[mm] \Rightarrow [/mm] x = [mm] \bruch{1}{11} \vektor{4 \\ 1 \\22} [/mm]

Dann noch Hessematrix (führe ich jetzt nicht auf).
Bekomme raus, dass diese positiv definit ist [mm] \Rightarrow [/mm] lokales Minimum bei x = [mm] \bruch{1}{11} \vektor{4 \\ 1 \\22} [/mm]

Das wäre aber laut meiner  Rechnung dann die einzige Extremstelle.

Passt der Ansatz ? Bzw. das Ergebnis ?

        
Bezug
lokale Extrema bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:01 Mi 12.12.2012
Autor: MathePower

Hallo s1mn,

> Es sei f: [mm]\IR^{3} \to \IR[/mm] gegeben durch f(x) = [mm]x^{T}[/mm] A x +
> [mm]c^{T}[/mm] x, wobei A:= [mm]\pmat{ 3 & -1 & 2 \\ -1 & 4 & 0 \\ 2 & 0 & 2}[/mm]
> und c:= [mm]\vektor{-2 \\ 0 \\ -8}.[/mm]
>  Bestimmen Sie alle lokalen
> Extremstellen von f.
>  Hey Leute,
>  
> Ich weiss nicht was diese Woche mit meinem Ana Blatt los
> ist, aber iwie bekomm ich fast nichts hin -.-
>  Tutorium hat mir leider auch nicht wirklich was gebracht.
>  
> Ich muss hier schon erstmal die Matrix mit den 2 Vektoren
> multiplizeren, sowie  die 2 Vektoren ?!
>  Und [mm]x:=\vektor{x \\ y \\ z}[/mm] setzen z.B.
>  
> Dann habe ich ja f(x,y,z) = (x,y,z)  [mm]\pmat{ 3 & -1 & 2 \\ -1 & 4 & 0 \\ 2 & 0 & 2} \vektor{x \\ y \\ z}[/mm]
> + (-2 0 -8) [mm]\vektor{x \\ y \\ z}[/mm]
>  
> Bekomme dann als Funktion am Ende:
>  f(x,y,z) = [mm]3x^{2}[/mm] + [mm]4y^{2}[/mm] + [mm]2z^{2}[/mm] - 2xy - 2x -8z
>  


Das stimmt nicht ganz:

[mm]f(x,y,z) = 3x^{2} + 4y^{2} + 2z^{2} - 2xy\red{+4xz} - 2x -8z[/mm]


> dann abgeleitet:
>  f'(x,y,z) = (6x-2y-2,  8y-2x, 4z-8)
>  
> f'(x,y,z) nullsetzen:
>  x = [mm]\bruch{4}{11}[/mm]
>  y = [mm]\bruch{1}{11}[/mm]
>  z = 2
>  
> [mm]\Rightarrow[/mm] x = [mm]\bruch{1}{11} \vektor{4 \\ 1 \\22}[/mm]
>  
> Dann noch Hessematrix (führe ich jetzt nicht auf).
> Bekomme raus, dass diese positiv definit ist [mm]\Rightarrow[/mm]
> lokales Minimum bei x = [mm]\bruch{1}{11} \vektor{4 \\ 1 \\22}[/mm]
>  
> Das wäre aber laut meiner  Rechnung dann die einzige
> Extremstelle.
>  
> Passt der Ansatz ? Bzw. das Ergebnis ?


Das Ergebnis stimmt nicht,
da die Funktion nicht korrekt ist.


Gruss
MathePower

Bezug
                
Bezug
lokale Extrema bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:03 Mi 12.12.2012
Autor: s1mn

Danke für deine schnelle Antwort. Ja du hast Recht. Stimmt nicht. Hab den Fehler auch gefunden.

Es hat sich ein Minus eingeschlichen, welches die 4xz verschwinden lassen hat^^

Danke :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]