matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPhysikmathematisches Pendel
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Physik" - mathematisches Pendel
mathematisches Pendel < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

mathematisches Pendel: Gesamtfehler g
Status: (Frage) beantwortet Status 
Datum: 19:04 Do 24.11.2011
Autor: Brombeere

Aufgabe
Fehler einer Größe, welche von 2 Messgrößen abhängt. (Im Eigentlichen gibt es keine Fragestellung, ich versuche nur ein Beispiel nachzuvollziehen.)


Beispiel: mathematisches Pendel

Wie in der Aufgabenstellung bereits erwähnt geht es um die Bestimmung eines gesamten Fehlers der Größe A, bedingt durch 2 MEssfehler. Bestimmt werden soll die Erdbeschleunigung g mit Hilfe des Fadenpendels. Zu messende Größe sind dabei die Länge des Seils L, und die Schwingungsdauer T.

Im Beispiel ist dann folgende Formel gegeben

[mm] \Delta [/mm] g = [mm] [(\bruch{dg}{dL} \Delta L)^2 [/mm] + [mm] (\bruch{dg}{dT} \Delta T)^2]^\bruch{1}{2} [/mm]

Bis dahin ist auch alles soweit klar, nur der Übergang zur nächsten Gleichung leuchtet mir nicht ganz ein:

[mm] \Delta [/mm] g = [mm] g[(\bruch{\Delta L}{L})^2 [/mm] + [mm] (\bruch{2 \Delta T}{T})^2]^\bruch{1}{2} [/mm]

[mm] \bruch{dg}{dL} [/mm] stellt ja genau wie [mm] \bruch{dg}{dT} [/mm] die Ableitung von g(L) bzw g(T) da. Aber wie kommt man auf [mm] \bruch{\Delta L}{L} [/mm] und [mm] \bruch{2 \Delta T}{T}. [/mm] Nach meiner Rechnung hätten die Ableitungen anders ausgesehen.

z.B.
g'(L) = [mm] \bruch{4\pi^2}{T^2} [/mm] bzw
g'(T) = [mm] \bruch{8\pi^2*L}{T^3} [/mm]

Könnte mir einer den Schritt von obiger Gleichung zu der drunter sagen?



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
mathematisches Pendel: Antwort
Status: (Antwort) fertig Status 
Datum: 19:17 Do 24.11.2011
Autor: MathePower

Hallo Brombeere,


[willkommenmr]


> Fehler einer Größe, welche von 2 Messgrößen abhängt.
> (Im Eigentlichen gibt es keine Fragestellung, ich versuche
> nur ein Beispiel nachzuvollziehen.)
>  
> Beispiel: mathematisches Pendel
>  
> Wie in der Aufgabenstellung bereits erwähnt geht es um die
> Bestimmung eines gesamten Fehlers der Größe A, bedingt
> durch 2 MEssfehler. Bestimmt werden soll die
> Erdbeschleunigung g mit Hilfe des Fadenpendels. Zu messende
> Größe sind dabei die Länge des Seils L, und die
> Schwingungsdauer T.
>  
> Im Beispiel ist dann folgende Formel gegeben
>  
> [mm]\Delta[/mm] g = [mm][(\bruch{dg}{dL} \Delta L)^2[/mm] + [mm](\bruch{dg}{dT} \Delta T)^2]^\bruch{1}{2}[/mm]
>  
> Bis dahin ist auch alles soweit klar, nur der Übergang zur
> nächsten Gleichung leuchtet mir nicht ganz ein:
>  
> [mm]\Delta[/mm] g = [mm]g[(\bruch{\Delta L}{L})^2[/mm] + [mm](\bruch{2 \Delta T}{T})^2]^\bruch{1}{2}[/mm]
>  
> [mm]\bruch{dg}{dL}[/mm] stellt ja genau wie [mm]\bruch{dg}{dT}[/mm] die
> Ableitung von g(L) bzw g(T) da. Aber wie kommt man auf
> [mm]\bruch{\Delta L}{L}[/mm] und [mm]\bruch{2 \Delta T}{T}.[/mm] Nach meiner
> Rechnung hätten die Ableitungen anders ausgesehen.
>  
> z.B.
>  g'(L) = [mm]\bruch{4\pi^2}{T^2}[/mm] bzw
>  g'(T) = [mm]\bruch{8\pi^2*L}{T^3}[/mm]
>  
> Könnte mir einer den Schritt von obiger Gleichung zu der
> drunter sagen?
>  


Es ist doch:

[mm]g'\left(L\right)=\bruch{4\pi^{2}}{T^{2}}=\left(\ \bruch{4*\pi^{2}}{T^{2}}*L \ \right)* \bruch{1}{L}=\bruch{g}{L}[/mm]

[mm]g'\left(T\right)=-2*\bruch{4*\pî^{2}}{T^{3}}*L=-2*\left(\ \bruch{4*\pi^{2}}{T^{2}}*L \right)*\bruch{1}{T}=-2*\bruch{g}{T}[/mm]


>
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt


Gruss
MathePower

Bezug
                
Bezug
mathematisches Pendel: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:21 Do 24.11.2011
Autor: Brombeere

Ja, da hast du recht... und ich frage mich die ganze Zeit wie es zustande kommt. Leider liegt dem auch kein fehlerfreies Literaturwerk zugrunde, sodass ich schon daran zweifelte.

Kann ich dich irgendwie bewerten? Nat. positiv.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]