matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare Algebrametrische Räume
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Lineare Algebra" - metrische Räume
metrische Räume < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

metrische Räume: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:36 Di 17.01.2006
Autor: Franzie

Hallöchen!
Ich hab die Aufgabe, folgenden Satz zu beweisen: Seien X,Y metrische Räume, f:X [mm] \to [/mm] Y. f ist genau dann auf X stetig, wenn das Urbild [mm] f^{-1} [/mm] (B)
jeder offenen Menge B [mm] \subseteq [/mm]  Y eine offene Teilmenge von X ist.

Klar, es sind zwei Richtungen zu zeigen. Hab mir jetzt erstmal die Definitionen aller vorkommenden Begriffe aufgeschrieben, aber ich komm selbst mit deren Hilfe auf keinen grünen Zweig. Weiß nicht, wie ich da ran gehen soll.Wäre für hilfreiche Ansätze echt dankbar.

liebe Grüße

        
Bezug
metrische Räume: Antwort
Status: (Antwort) fertig Status 
Datum: 12:06 Di 17.01.2006
Autor: Christian


> Hallöchen!
> Ich hab die Aufgabe, folgenden Satz zu beweisen: Seien X,Y
> metrische Räume, f:X [mm]\to[/mm] Y. f ist genau dann auf X stetig,
> wenn das Urbild [mm]f^{-1}[/mm] (B)
>  jeder offenen Menge B [mm]\subseteq[/mm]  Y eine offene Teilmenge
> von X ist.
>
> Klar, es sind zwei Richtungen zu zeigen. Hab mir jetzt
> erstmal die Definitionen aller vorkommenden Begriffe
> aufgeschrieben, aber ich komm selbst mit deren Hilfe auf
> keinen grünen Zweig. Weiß nicht, wie ich da ran gehen
> soll.Wäre für hilfreiche Ansätze echt dankbar.
>  
> liebe Grüße

Hallo.

Ich skizzier Dir vielleicht mal eine Richtung, die andere geht in ähnlichem Stil.

Sei [mm] $\varepsilon>0$. [/mm]
Seien $B$, [mm] $f^{-1}(B)\subset [/mm] X$ offen, [mm] $||_X$ [/mm] bezeichne die Metrik auf $X$, [mm] $||_Y$ [/mm] die auf $Y$.
Definiere nun für [mm] $x\in [/mm] X$: [mm] $B:=\{y\in Y \mid |f(x)-y|_Y<\varepsilon\}$. [/mm]
Dann ist $B$ offen in $Y$.
Da [mm] $f^{-1}(B)$ [/mm] offen [mm] $\forall x_0\in f^{-1}(B) \exists \delta: \forall x\in [/mm] X: [mm] |x-x_0|_X<\delta: x\in f^{-1}(B)\Rightarrow |f(x)-f(x_0)|_Y<\varepsilon$, [/mm] also $f$ stetig.

Kommst Du mit diesen Skizzen weiter?

Gruß,
Christian

Bezug
                
Bezug
metrische Räume: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 17:23 Di 17.01.2006
Autor: Franzie

Okay, danke erstmal für die Ansätze. Ist zwar anfangs schwer nachzuvollziehen, aber wenn man sich reinliest, ist es verständlich.
Hab jetzt versucht, die Rückrichtung irgendwie hinzukriegen:

Seien X,Y metrische Räume und sei f auf X stetig. Dann gilt für alle epsilon  >0 existiert ein delta >0, sodass für alle x [mm] \in [/mm] X gilt: wenn d(x,x0) < delta, dann ist d(f(x),f(x0)) < epsilon. Da ein solches epsilon  >0 existiert, existiert eine delta-Umgebung von x0, sodass f(delta-Umgebung(x0)) [mm] \subset [/mm] epsilon-Umgebun (f(x0)) zu [mm] f^{-1}(B). [/mm] Damit ist int B [mm] \supset [/mm] B, also B offen in Y.

Wie bringe ich das jetzt in Bezug mit X, weil ja B [mm] \subseteq [/mm] Y eine offene Teilmenge von X sein soll?

liebe Grüße

Bezug
                        
Bezug
metrische Räume: Antwort
Status: (Antwort) fertig Status 
Datum: 18:10 Di 17.01.2006
Autor: piet.t

Hallo Franzie,

B [mm] \subseteq [/mm] Y kann natürlich nicht in X offen sein, B liegt ja noch nicht mal unbedingt in X.
Die Grundidee ist in Ordnung, aber ich verstehe in Deinen Ausführungen noch nicht ganz, was vorgegeben ist und was Du zeigen willst (Vielleicht bin ich aber auch einfach schwer von Begriff).
Mach Dir als vielleicht nochmal genau klar, was bei dieser Richtung zu tun ist:
Gegeben ist f: X [mm] \to [/mm] Y stetig (klar!).
Ausserdem haben wir eine beliebige offene Teilmenge B [mm] \subseteq [/mm] Y.
Zu zeigen ist jetzt, dass [mm]f^{-1}(B) = \{x \in X \, | \, f(x) \in B \}[/mm] eine offene Menge (in X) ist.

Gruß

piet

Bezug
                                
Bezug
metrische Räume: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:42 Di 17.01.2006
Autor: Franzie

Danke für die Hilfe. Weiß jetzt, worauf das Ganze hinausläuft. Hab auch noch ein paar Ansätze in nem Buch gefunden.

liebe Grüße

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]