matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare Algebrametrischer Raum
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Lineare Algebra" - metrischer Raum
metrischer Raum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

metrischer Raum: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 22:52 Mo 13.11.2006
Autor: kleine-Elfe

Aufgabe
Für m, n [mm] \in \IN* [/mm] sei
d(m, [mm] n)=\begin{cases} (m+n)/mn, & \mbox{falls } m \not= \\ 0, & \m{sonst } \end{cases} [/mm]

Zeigen Sie, dass [mm] (\IN*, [/mm] d) ein metrischer Raum ist und bestimmen Sie die abgeschlossene (1 + 1/n)-Umgebung von n.

kann mir bitte bitte jemand helfen?

        
Bezug
metrischer Raum: Antwort
Status: (Antwort) fertig Status 
Datum: 23:24 Mo 13.11.2006
Autor: leduart

Hallo Elfe
Da ist zu wenig von dir!
Was musst du denn nachweisen? Welche Bedingung muss d erfüllen. Welche davon hast du Schwierigkeiten nachzuweisen?
Gruss leduart

Bezug
                
Bezug
metrischer Raum: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 17:22 Di 14.11.2006
Autor: kleine-Elfe

Hallo,

ich habe alles abgeschrieben, was in der Aufgabe stand. Ich habe nochmal geschaut, habe aber nichts vergessen...

Bezug
                        
Bezug
metrischer Raum: Antwort
Status: (Antwort) fertig Status 
Datum: 17:40 Di 14.11.2006
Autor: angela.h.b.


> Hallo,
>  
> ich habe alles abgeschrieben, was in der Aufgabe stand. Ich
> habe nochmal geschaut, habe aber nichts vergessen...

Doch.
Du hast Wichtiges vergessen, z.B. die Forenregeln:

# Eigene Ideen und Lösungsansätze posten oder konkrete Frage stellen

So weiß ja niemand, wie er Dir helfen kann.

Gruß v. Angela







Bezug
                                
Bezug
metrischer Raum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:40 So 19.11.2006
Autor: peter_d

Hallo. Ich habe die gleiche Aufgabe :-)

Zu zeigen, dass es ein metischer Raum ist, das ist nicht schwer, hab ich schon gemacht :-)

Was ist nun aber mit einer abgeschlossenen (1+1/n)-Umgebung gemeint?

Danke

Bezug
                                        
Bezug
metrischer Raum: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:56 So 19.11.2006
Autor: peter_d

Folgende Überlegung:

Es gilt ja:

[mm] $\text{Für jedes }\varepsilon>0\text{ist }\bar{\mathbb{B}}(a,\varepsilon)\text{ die abgeschlossene }\varepsilon\text{-Umgebung von a}.$ [/mm]

[mm] $bar{\mathbb{B}}(a,\varepsilon) [/mm] := [mm] \{n\in\mathbb{N}^x; d(a,n)\le \varepsilon\}$ [/mm]

So, nun transromiere ich, und habe dann:

[mm] $\dfrac{a+n}{an} \le 1+\dfrac{1}{n}$ [/mm]
...
[mm] $1\le [/mm] a$

Habe ich nun etwas davon?


Danke und Gruß

Bezug
                                                
Bezug
metrischer Raum: Antwort
Status: (Antwort) fertig Status 
Datum: 08:00 Mo 20.11.2006
Autor: angela.h.b.


> Folgende Überlegung:
>  
> Es gilt ja:
>  
> [mm]\text{Für jedes }\varepsilon>0\text{ist }\bar{\mathbb{B}}(a,\varepsilon)\text{ die abgeschlossene }\varepsilon\text{-Umgebung von a}.[/mm]
>  
> [mm]bar{\mathbb{B}}(a,\varepsilon) := \{n \in\mathbb{N}^x; d(a,n)\le \varepsilon\}[/mm]
>  
> So, nun transromiere ich, und habe dann:
>  
> [mm]\dfrac{a+n}{an} \le 1+\dfrac{1}{n}[/mm]
>  ...
>  [mm]1\le a[/mm]
>  
> Habe ich nun etwas davon?

Hallo,

nein, so wie Du es gemacht hast, hast Du nichts davon - aber der Ansatz war trotzdem gut.
Dein Fehler: das n in [mm] \{n \in\mathbb{N}^x; d(a,n)\le \varepsilon\} [/mm] und das in [mm] 1+\bruch{1}{n} [/mm] sind zwei völlig verschiedene Schuhe...

Die Frage ist ja: welche Elemente liegen in der [mm] 1+\bruch{1}{n}-Umgebung [/mm] von 1?

Sei also n [mm] \in \IN [/mm] vorgegeben. Gesucht ist nun die Menge aller [mm] x\in \IN [/mm] für die gilt: d(x,1) [mm] \le 1+\bruch{1}{n}. [/mm]

So wirst Du zum Ziel kommen.

Gruß v. Angela

Bezug
                                        
Bezug
metrischer Raum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:54 So 19.11.2006
Autor: kleine-Elfe

hallo,

aber wie zeige ich denn, dass das ein metrischer Raum ist?

Bezug
                                                
Bezug
metrischer Raum: Antwort (nicht fertig)
Status: (Antwort) noch nicht fertig Status 
Datum: 21:08 So 19.11.2006
Autor: peter_d

Damit (N*,d) ein metrischer Raum ist, müssen bestimmte Eigenschaften erfüllt sein (hat Escher doch gelesen...... )

d(m,n) >= 0
d(m,n) = 0 => m=n
d(m,n) = d(n,m)
d(m,n) <= d(m,x) + d(x,n)

Ist doch jetzt nur einsetzen.

Gruß

Bezug
                                                        
Bezug
metrischer Raum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:14 So 19.11.2006
Autor: kleine-Elfe

dumme frage:

was muss ich denn wo einsetzen?

Bezug
                                                                
Bezug
metrischer Raum: Antwort
Status: (Antwort) fertig Status 
Datum: 01:32 Mo 20.11.2006
Autor: leduart

Hallo Elfe
Du musst zeigen, dass für das in der Aufgabe konstruierte d(n,m) die Forderungen gelten.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]