matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMaßtheoriemetrischer Raum, Borelmengen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Maßtheorie" - metrischer Raum, Borelmengen
metrischer Raum, Borelmengen < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

metrischer Raum, Borelmengen: Hinweis, Beweisidee
Status: (Frage) beantwortet Status 
Datum: 11:08 Sa 04.12.2010
Autor: Kayle

Aufgabe
Sei (K,d) ein kompakter metrischer Raum, [mm] \mu :\mathcal{E}\mapsto[0,\infty) [/mm] ein (endliches) Maß auf der [mm] \sigma-Algebra \mathcal{E} [/mm] der Borelmengen von K.
Sei [mm] \alpha(f)=\integral_{K}{f d\mu}, C^0(K)\supset X=\{f | \alpha(f)=0\}. [/mm]

Zeigen Sie:

i) [mm] \forall f\in C^0(K)\exists f^{\*}\in [/mm] X: [mm] d(f,X)=\parallel f-f^{\*}\parallel. [/mm]
ii) Berechnen Sie d(f,X) als Funktion von [mm] \alpha(f) [/mm] und [mm] \mu(K) [/mm]
iii) Zeigen Sie, dass [mm] f^{\*} [/mm] i.a. nicht eindeutig bestimmt ist.
iv) [mm] \exists O(\mu)\subset [/mm] K, offen
[mm] f_1^{\*},f_2^{\*}\in [/mm] X, [mm] \parallel f-f_1^{\*}\parallel=\parallel f-f_2^{\*}\parallel=d(f,X) \Rightarrow \{x\in K | f_1^{\*}(x)\not=f_2^{\*}(x)\}\subset O(\mu) [/mm]

Hallo,

ich bräuchte ein paar Ansätze wie ich die einzelnen Teilaufgaben lösen könnte. Wäre dankbar über jeden Hinweis!

Könnte mir vielleicht auch Jemand erklären, was bei (ii) zu tun ist? Ich soll jst wenn ich das richtig verstehe eine Ableitung bestimmen, aber ich weiß nicht genau von was. Ich seh ja was [mm] \alpha(f) [/mm] ist, aber ich weiß nicht was ich damit jetzt anfangen soll.Wäre super wenn mir das einer erklären könnte!

Viele Grüße
Kayle

        
Bezug
metrischer Raum, Borelmengen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:04 Sa 04.12.2010
Autor: fred97

Zum wiederholten Male ist es so, dass man mit vielen Symbolen nichts anfangen kan, weil Du nicht sagst, was sie bedeuten.

Ich vermute:

[mm] 1.C^0(K) [/mm] ist die Menge der stetigen (reellwertigen ?) Funktionen auf K.

2. [mm] \alpha [/mm] ist ein lineares Funktional auf [mm] C^0(K) [/mm]

3. X ist der Kern von [mm] \alpha. [/mm]



d ist eine Metrik auf K, aber was bedeutet  d(f,X)  ?

Bei iv) scheint was zu fehlen, denn die Aussage ist trivial mit [mm] O(\mu)=K [/mm]

FRED

Bezug
                
Bezug
metrischer Raum, Borelmengen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 12:25 Sa 04.12.2010
Autor: Kayle

Hey Fred,

ich weiß das dich das aufregt, wenn du der Meinung bist, dass was fehlt. Aber ich habe 10 mal nachgeschaut ob Alles stimmt, und das tut es auch. Ich hab die Aufgabe 1zu1 übernommen.. mehr Informationen haben ich auch nicht :(

Und du sagst es wäre trivial bei iv) wenn [mm] O(\mu)=K? [/mm] Aber ich dachte [mm] O(\mu) [/mm] soll eine echte Teilmenge von K sein, damit ist doch Gleichheit ausgeschlossen oder?

Viele Grüße

Bezug
                        
Bezug
metrischer Raum, Borelmengen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:19 Mo 06.12.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]