matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysisnoch mehr DGL
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis" - noch mehr DGL
noch mehr DGL < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

noch mehr DGL: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:59 Mo 21.03.2005
Autor: mausi

Hallo
nachdem ich nun die eine Aufgabe verstanden habe hänge ich schon wieder bei der nächsten
y'= [mm] \begin{pmatrix} 3 & 2 \\ 2 & 0 \end{pmatrix} [/mm] y
wie bestimme ich hier eine allgemeine Lösung???
Danke

        
Bezug
noch mehr DGL: Vorgehensweise
Status: (Antwort) fertig Status 
Datum: 22:22 Mo 21.03.2005
Autor: MathePower

Hallo mausi,

zunächst mußt Du die Eigenwerte der Matrix A bestimmen.

[mm]A\; = \;\left( {\begin{array}{*{20}c} 3 & 2 \\ 2 & 0 \\ \end{array} } \right)[/mm]

Zur Bestimmung der Eigenwerte ist das charakterische Polynom nötig:

[mm]\det \left( {\begin{array}{*{20}c} {3 - \lambda } & 2 \\ 2 & { - \lambda } \\ \end{array} } \right)\; = \;0[/mm]

Die Lösungen hiervon sind die Eigenwerte.

Nun bestimmt man zu den Eigenwerten entsprechende Eigenvektoren:

Die Eigenvektoren zu einem Eigenvektor sind Lösungen von

[mm] \left( {\begin{array}{*{20}c} {3 - \lambda } & 2 \\ 2 & { - \lambda } \\ \end{array} } \right)\;x_\lambda \; = \;\left( {\begin{array}{*{20}c} 0 \\ 0 \\ \end{array} } \right) [/mm]

Die allgemeine Lösung ergibt sich zu

[mm]\left( {\begin{array}{*{20}c} {y_1 \left( t \right)} \\ {y_2 \left( t \right)} \\ \end{array} } \right)\; = \;c_1 \;x_{\lambda _1 } \;e^{\lambda _1 t} \; + \;c_2 \;x_{\lambda _2 } \;e^{\lambda 2t} [/mm]

Gruß
MathePower







Bezug
                
Bezug
noch mehr DGL: auweia is ja lineare Algebra
Status: (Frage) beantwortet Status 
Datum: 22:52 Mo 21.03.2005
Autor: mausi

hatte das letztes Semester aber schon wieder völlig vergessen wie das ging *heul*
hilfe bitte

Bezug
                        
Bezug
noch mehr DGL: Ansatz
Status: (Antwort) fertig Status 
Datum: 16:12 Di 22.03.2005
Autor: MathePower

Hallo mausi,

um die Eigenwerte der Matrix zu bestimmen, bestimmst zunächst das charakteristische Polynom:

[mm] \begin{gathered} \det \left( {\begin{array}{*{20}c} {3 - \lambda } & 2 \\ 2 & { - \lambda } \\ \end{array} } \right)\; = \;0 \hfill \\ \Leftrightarrow \;\left( {3 - \lambda } \right)\;\left( { - \lambda } \right)\; - \;4\; = \;0 \hfill \\ \Leftrightarrow \;\lambda ^2 \; - \;3\lambda \; - \;4\; = \;0 \hfill \\ \end{gathered} [/mm]

Hieraus bekommst zu 2 Lösungen[mm]\lambda_{1}[/mm] und [mm]\lambda_{2}[/mm]

Um jetzt einen Eigenvektor zu einem Eigenwert [mm]\lambda[/mm] zu bestimmen, löst Du das folgende Gleichungssystem:

[mm] \left( {\begin{array}{*{20}c} {3 - \lambda } & 2 \\ 2 & { - \lambda } \\ \end{array} } \right)\;x\; = \;\left( {\begin{array}{*{20}c} 0 \\ 0 \\ \end{array} } \right)[/mm]

Dies ist dann ein Gleichungssystem mit 2 parallelen Zeilen, wovon ja nur eine genügt zu betrachten.

Aus dieser Gleichung erhältst Du dann den Eigenvektor zu diesem Eigenwert.

Gruß
MathePower


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]