matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Finanzmathematiknutzenmaximaler Konsumplan
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Finanzmathematik" - nutzenmaximaler Konsumplan
nutzenmaximaler Konsumplan < Finanzmathematik < Finanz+Versicherung < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

nutzenmaximaler Konsumplan: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:13 Mo 17.09.2007
Autor: Karl_Pech

Hallo Zusammen,


Ich habe Verständnisprobleme bei der Musterlösung folgender Aufgabe:


Aufgabe

Es seien folgende Investitionsprojekte bei einem Kapitalmarktzins von 10% gegeben


[mm]\begin{array}{|l|r|r|r|r|} \hline\texttt{Projekt}&1&2&3&4\\\hline\hline \texttt{Auszahlung}&3000\texttt{\,\euro}&4000\texttt{\,\euro}&2000\texttt{\,\euro}&2000\texttt{\,\euro}\\\hline \texttt{Rückfluss}&3750\texttt{\,\euro}&6000\texttt{\,\euro}&2100\texttt{\,\euro}&3500\texttt{\,\euro}\\\hline \end{array}[/mm]


Die Nutzenfunktion des Unternehmens sei gleich


[mm]u\left(C_0,C_1\right) := \sqrt{7+C_0+C_1}[/mm]


Bestimmen Sie den nutzenmaximalen Konsumplan des Unternehmens.


Und hier ist die Musterlösung:


Transformation der Nutzenfunktion:


[mm]\tilde{u}\left(C_0,C_1\right) = C_0+C_1[/mm]


Anschließend werden die Renditen der 4 Projekte ermittelt; Der optimale Konsumplan wären alle Projekte, deren Renditen oberhalb von 10% sind. Soweit ist es mir klar. Was dann in der Musterlösung steht, ist mir leider nicht mehr klar:


Der nutzenmaximale Konsumplan ist gleich


[mm]\left(C_0^{\*},C_1^{\*}\right)=(0,\operatorname{EW}(10\%))[/mm]


mit


[mm]\operatorname{EW}(10\%) = -9000\cdot{1.1} + 3750 + 6000 + 3500 = 3350[/mm]


Weiß jemand warum man hier den Endwert ermitteln muß? Und welche Bedeutung hat die Zahl -9000? Wie entsteht sie? Wieso ist das obige der nutzenmaximale Konsumplan?


Vielen Dank für die Hilfe!



Grüße
Karl




        
Bezug
nutzenmaximaler Konsumplan: Antwort
Status: (Antwort) fertig Status 
Datum: 20:25 Mo 17.09.2007
Autor: dormant

Hi!

Projekt 3 hat ja einen negativen EW, bzw. Rendite unter 10%, d.h. er wird gar nicht konsumiert. Deshlab werden die Auszahlungen der Projekte 1, 2 und 4 addiert und mit 10% aufgezinst == -9000*1,1.

Der Rest des Ausdrucks sind die Beträge der Rückflüsse der Projekte.

Nur informationshalber - was ist [mm] C_0 [/mm] und [mm] C_1 [/mm] ?

Gruß,
dormant

Bezug
                
Bezug
nutzenmaximaler Konsumplan: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:07 Mo 17.09.2007
Autor: Karl_Pech

Hallo dormant!


Danke für die Hilfe!


> Nur informationshalber - was ist [mm]C_0[/mm] und [mm]C_1[/mm] ?


Ich denke, da zitiere ich lieber aus dem Skript: ;-)


Das Ausgangsproblem eines Konsumenten besteht darin, einen vorhandenen Kapitalstock [mm]K>0\![/mm], der ihm zum Anfangszeitpunkt [mm]t=0\![/mm] zur Verfügung steht, auf die Zeitpunkte [mm]t=0\![/mm] und [mm]t=1\![/mm] zu verteilen. Wird ein Kapitalmarkt mit einem Anlagezinssatz von [mm]r>0\![/mm] unterstellt und die Betrachtung nur auf diese beiden Zeitpunkte beschränkt und zusätzlich angenommen, daß zum Zeitpunkt [mm]t=1\![/mm] keine weiteren Vermögenswerte zur Verfügung stehen, so lassen sich alle Konsumpläne darstellen als:


[mm]\left(C_0,C_1\right)\in\mathbb{R}^2_{\ge 0}[/mm] mit [mm]K\ge C_0+(1+r)^{-1}C_1[/mm].



> Hi!
>  
> Projekt 3 hat ja einen negativen EW, bzw. Rendite unter
> 10%, d.h. er wird gar nicht konsumiert. Deshlab werden die
> Auszahlungen der Projekte 1, 2 und 4 addiert und mit 10%
> aufgezinst == -9000*1,1.
>  
> Der Rest des Ausdrucks sind die Beträge der Rückflüsse der
> Projekte.


Ach so, jetzt verstehe ich schonmal wieso [mm]C_1 = \operatorname{EW}(10\%)[/mm] ist - Danke. Also wenn ich jetzt mal die Musterlösung "zurückverfolge" ergibt sich:


[mm]\operatorname{EW}=\left(K-C_0\right)(1+r)[/mm]

[mm]C_0^{\*}=0\Rightarrow K=\operatorname{EW}(1+r)^{-1}[/mm]


Jetzt sehe ich erstmal nur, daß hier der Kapitalstock der Kapitalwert ist. Jedenfalls ist er dies, wenn ich am Anfang nichts konsumiere. Wieso ist genau das nutzenmaximal?



Grüße
Karl




Bezug
                        
Bezug
nutzenmaximaler Konsumplan: Tipp
Status: (Antwort) fertig Status 
Datum: 09:27 Di 18.09.2007
Autor: Josef

Hallo Karl,



>  
>
> > Nur informationshalber - was ist [mm]C_0[/mm] und [mm]C_1[/mm] ?
>  

> Ich denke, da zitiere ich lieber aus dem Skript: ;-)
>  
>
> Das Ausgangsproblem eines Konsumenten besteht darin, einen
> vorhandenen Kapitalstock [mm]K>0\![/mm], der ihm zum
> Anfangszeitpunkt [mm]t=0\![/mm] zur Verfügung steht, auf die
> Zeitpunkte [mm]t=0\![/mm] und [mm]t=1\![/mm] zu verteilen. Wird ein
> Kapitalmarkt mit einem Anlagezinssatz von [mm]r>0\![/mm] unterstellt
> und die Betrachtung nur auf diese beiden Zeitpunkte
> beschränkt und zusätzlich angenommen, daß zum Zeitpunkt
> [mm]t=1\![/mm] keine weiteren Vermögenswerte zur Verfügung stehen,
> so lassen sich alle Konsumpläne darstellen als:
>  
>
> [mm]\left(C_0,C_1\right)\in\mathbb{R}^2_{\ge 0}[/mm] mit [mm]K\ge C_0+(1+r)^{-1}C_1[/mm].
>  
>
> > Hi!
>  >  
> > Projekt 3 hat ja einen negativen EW, bzw. Rendite unter
> > 10%, d.h. er wird gar nicht konsumiert. Deshlab werden die
> > Auszahlungen der Projekte 1, 2 und 4 addiert und mit 10%
> > aufgezinst == -9000*1,1.
>  >  
> > Der Rest des Ausdrucks sind die Beträge der Rückflüsse der
> > Projekte.
>  
>
> Ach so, jetzt verstehe ich schonmal wieso [mm]C_1 = \operatorname{EW}(10\%)[/mm]
> ist - Danke. Also wenn ich jetzt mal die Musterlösung
> "zurückverfolge" ergibt sich:
>  
>
> [mm]\operatorname{EW}=\left(K-C_0\right)(1+r)[/mm]
>  
> [mm]C_0^{\*}=0\Rightarrow K=\operatorname{EW}(1+r)^{-1}[/mm]
>  
>
> Jetzt sehe ich erstmal nur, daß hier der Kapitalstock der
> Kapitalwert ist. Jedenfalls ist er dies, wenn ich am Anfang
> nichts konsumiere. Wieso ist genau das nutzenmaximal?
>  


Der Kapitalstock ist 9.000

Der Kapitalwert des optimalen Investitionsplans berechnet sich zu:

- 9.000 + [mm] \bruch{3.750}{1,10} [/mm] + [mm] \bruch{6.000}{1,10} [/mm] + [mm] \bruch{3.500}{1,10} [/mm] = 3.045,46


Der nutzenmaximale Konsumplan lautet:

9.000 + ( 3.045,46  : 2 = ) 1.522,73 = 10.522,73


[]Vergleiche hier



  Viele Grüße
Josef



Alle Angaben ohne Gewähr auf Richtigkeit; doch wer nicht wagt, der nicht gewinnt ...

Bezug
                                
Bezug
nutzenmaximaler Konsumplan: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:30 Di 18.09.2007
Autor: Karl_Pech

Hallo Josef,


Danke für die Hilfe!


So wie ich das inzwischen verstanden habe, geht man erstmal von der transformierten Nutzenfunktion [mm]u\left(C_0\right) = C_0 + \left(K-C_0\right)(1+r)[/mm] aus. Diese Funktion ist letztlich eine Gerade:


[mm]u\left(C_0\right) = -rC_0 + K(1+r)[/mm],


welche bei [mm](0,K(1+r))\![/mm] einen sinnvollen nutzenmaximalen Wert erreicht. Ok, und da meint halt die Musterlösung: [mm]K(1+r)=\operatorname{EW}[/mm], was ich nun auch annähernd nachvollziehen kann... Danke nochmal für die Hilfe.



Grüße
Karl




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]