matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheorieoo viele PZ (Thue) - Abschätzg
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Zahlentheorie" - oo viele PZ (Thue) - Abschätzg
oo viele PZ (Thue) - Abschätzg < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

oo viele PZ (Thue) - Abschätzg: oo viele Primzahlen nach Thue
Status: (Frage) beantwortet Status 
Datum: 01:52 So 27.10.2019
Autor: Marcel

Aufgabe
Warum gilt [mm] $2^n \le (n+1)*n^{r-1}$? [/mm]




Thue hat einen eigenen Beweis dafür, dass es [mm] $\infty$ [/mm] viele Primzahlen gibt - hier nur der Anfang davon:
Man wähle $k,n [mm] \in \IN$ [/mm] mit [mm] $(n+1)^k [/mm] < [mm] 2^n$, [/mm] und es seien [mm] $p_1=2$, [/mm] ..., [mm] $p_r$ [/mm] die Primzahlen [mm] $\le 2^n$. [/mm]

Für jede ganze Zahl [mm] $m\,$ [/mm] mit $1 [mm] \le [/mm] m [mm] \le 2^n$ [/mm] ist dann $m$ als Produkt
     $m = [mm] {{p_1}^{e_1}} \cdot [/mm] ... [mm] \cdot {{p_r}^{e_r}}$ [/mm]
mit $0 [mm] \le e_j \le [/mm] n$ ($j=1,...,n$) darstellbar. (Primfaktorzerlegung darf man also als bekannt voraussetzen!)

Annahme: $r [mm] \le [/mm] k$. Dann hätte ich jetzt argumentiert: Es ist
[mm] $2^n [/mm] = [mm] |\{m \in \IN: m \le 2^n\}| \le |\{(e_j)_{j=1}^{r}: 0 \le e_j \le n\}|$ [/mm] (wegen der Primfaktordarstellung einer jeden Zahl, s.o.)

und erhalte so dann auch [mm] $2^n \le (n+1)^r \le (n+1)^k [/mm] < [mm] 2^n$, [/mm] den gewünschten Widerspruch des Beweises. (Man beachte $n+1 = [mm] |\{k \in \IN_0: 0 \le k \le n\}|$.) [/mm]

ABER dort steht

    [mm] $\red{2^n \le (n+1)\cdot n^{r-1}} [/mm] < ...$

Und das Ganze soll sich laut Text ergeben durch: "Das Abzählen aller möglichen Kombinationen ergibt..."

Woher kommt denn die rote Ungleichung? Sieht da jemand, welche Kombinationen da gezählt wurden? (Und würde meine Überlegung nicht auch reichen, um den gewünschten Widerspruch zu erzielen?)

Viele Grüße,
Marcel

        
Bezug
oo viele PZ (Thue) - Abschätzg: Antwort
Status: (Antwort) fertig Status 
Datum: 20:01 So 27.10.2019
Autor: HJKweseleit


> Warum gilt [mm]2^n \le (n+1)*n^{r-1}[/mm]?
>  
>
> Thue hat einen eigenen Beweis dafür, dass es [mm]\infty[/mm] viele
> Primzahlen gibt - hier nur der Anfang davon:
>  Man wähle [mm]k,n \in \IN[/mm] mit [mm](n+1)^k < 2^n[/mm], und es seien
> [mm]p_1=2[/mm], ..., [mm]p_r[/mm] die Primzahlen [mm]\le 2^n[/mm].
>  
> Für jede ganze Zahl [mm]m\,[/mm] mit [mm]1 \le m \le 2^n[/mm] ist dann [mm]m[/mm] als
> Produkt
>       [mm]m = {{p_1}^{e^_1}} \cdot ... \cdot {{p_r}^{e_r}}[/mm]
>  mit
> [mm]0 \le e_j \le n[/mm] ([mm]j=1,...,n[/mm]) darstellbar.
> (Primfaktorzerlegung darf man also als bekannt
> voraussetzen!)
>  
> Annahme: [mm]r \le k[/mm]. Dann hätte ich jetzt argumentiert: Es
> ist
>  [mm]2^n = |\{m \in \IN: m \le 2^n\}| \le |\{(e_j)_{j=1}^{r}: 0 \le e_j \le n\}|[/mm]
> (wegen der Primfaktordarstellung einer jeden Zahl, s.o.)
>  
> und erhalte so dann auch [mm]2^n \le (n+1)^r \le (n+1)^k < 2^n[/mm],
> den gewünschten Widerspruch des Beweises. (Man beachte [mm]n+1 = |\{k \in \IN_0: 0 \le k \le n\}|[/mm].)



Du hast völlig Recht!

Für jedes [mm] e_i [/mm] gibt es n+1 Mgl., da es r solche [mm] e_i [/mm] gibt, gibt es [mm] (n+1)^r [/mm] Mgl.



>  
> ABER dort steht
>
> [mm]\red{2^n \le (n+1)\cdot n^{r-1}} < ...[/mm]
>  
> Und das Ganze soll sich laut Text ergeben durch: "Das
> Abzählen aller möglichen Kombinationen ergibt..."
>  
> Woher kommt denn die rote Ungleichung? Sieht da jemand,
> welche Kombinationen da gezählt wurden? (Und würde meine
> Überlegung nicht auch reichen, um den gewünschten
> Widerspruch zu erzielen?)
>  



Ja, die rote Ungleichung ergibt sich nicht aus dem Text. Deine Überlegung reicht völlig.

> Viele Grüße,
>  Marcel


Bezug
                
Bezug
oo viele PZ (Thue) - Abschätzg: Danke!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:50 Mo 28.10.2019
Autor: Marcel

Alles klar, vielen Dank. 🙂

Bezug
                
Bezug
oo viele PZ (Thue) - Abschätzg: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:39 Di 29.10.2019
Autor: hippias


>
> Ja, die rote Ungleichung ergibt sich nicht aus dem Text.
> Deine Überlegung reicht völlig.

Ich schlage einmal diese Überlegung vor: da [mm] $m\leq 2^{n}$ [/mm] vorausgesetzt ist, kann nur [mm] $e_{1}$ [/mm] die Werte [mm] $0,\ldots,n$ [/mm] annehmen. Für $r>1$ liegt [mm] $e_{r}$ [/mm] zwangsläufig zwischen $0$ und $n-1$.


>
> > Viele Grüße,
>  >  Marcel
>  


Bezug
                        
Bezug
oo viele PZ (Thue) - Abschätzg: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:25 Di 29.10.2019
Autor: Marcel

Hallo Hippias,

> >
> > Ja, die rote Ungleichung ergibt sich nicht aus dem Text.
> > Deine Überlegung reicht völlig.
> Ich schlage einmal diese Überlegung vor: da [mm]m\leq 2^{n}[/mm]
> vorausgesetzt ist, kann nur [mm]e_{1}[/mm] die Werte [mm]0,\ldots,n[/mm]
> annehmen. Für [mm]r>1[/mm] liegt [mm]e_{r}[/mm] zwangsläufig zwischen [mm]0[/mm] und
> [mm]n-1[/mm].

weil [mm] $p_1=2$ [/mm] und jedes andere [mm] $p_j$ [/mm] ja $> 2$ ist. Natürlich. [bonk]

Danke Dir, manchmal steht man vor dem Wald und sucht die Bäume... ;)

Viele Grüße,
Marcel


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]