matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGeraden und Ebenenorthogonalität von geraden
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Geraden und Ebenen" - orthogonalität von geraden
orthogonalität von geraden < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

orthogonalität von geraden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:55 So 08.03.2009
Autor: sunny1991

Aufgabe
gegeben ist eine gerade [mm] g:\vec{x}=\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}+t*\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} [/mm]
bestimmen sie eine gleichung der geraden h, die orthogonal zur geraden g ist und durch den punkt(1/1/1) geht.

hallo,
ich habe die lösung für die aufgabe und die lautet: [mm] h:\vec{x}=\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}+t*\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} [/mm]
nur wie kommen die darauf? ich dachte nämlich man kann den richtungsvektor der geraden g nehmen und als richtungsvektor der geraden h benutzen, aber da beide stützvektoren auch gleich sind wären die ja identisch.also wäre nett wenn mir das jemand erklären könnte.
lg

        
Bezug
orthogonalität von geraden: Antwort
Status: (Antwort) fertig Status 
Datum: 14:20 So 08.03.2009
Autor: angela.h.b.


> gegeben ist eine gerade [mm]g:\vec{x}=\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}+t*\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}[/mm]
>  
> bestimmen sie eine gleichung der geraden h, die orthogonal
> zur geraden g ist und durch den punkt(1/1/1) geht.
>  hallo,
>  ich habe die lösung für die aufgabe und die lautet:
> [mm]h:\vec{x}=\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}+t*\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}[/mm]
>  

Hallo,

da die neue Gerade orthogonal sein soll zu der alten, müssen doch ihre Richtungen zueinander senkrecht sein.

Also mußt Du den neuen Richtungsvektor so bestimmen, daß er senkrecht zu [mm] \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} [/mm] ist.

Gruß v. Angela

Bezug
                
Bezug
orthogonalität von geraden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:22 So 08.03.2009
Autor: sunny1991

okay das habe ich verstanden nur wie komme ich denn dann auf das ergebnis?

Bezug
                        
Bezug
orthogonalität von geraden: Antwort
Status: (Antwort) fertig Status 
Datum: 14:26 So 08.03.2009
Autor: XPatrickX

Hallo,


[mm] \vektor{1 \\ 0 \\ 1}\cdot\vektor{x \\ y \\z}=0 [/mm]

[mm] \gdw [/mm] x+z=0

Nun kannst du deine x,y,z wählen. y ist völlig beliebig und x und z müssen addiert Null ergeben. Daher ist eine mögliche Lösung (0,1,0). Beachte aber, dass es unendlich viele Lösungen gibt!!

Gruß Patirck

Bezug
                                
Bezug
orthogonalität von geraden: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:30 So 08.03.2009
Autor: sunny1991

achso also  kann ich mir das aussuchen... ja dann ist alles klar! vielen dank!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]