matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGanzrationale Funktionenparabel bestimmen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Ganzrationale Funktionen" - parabel bestimmen
parabel bestimmen < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

parabel bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:18 Di 22.04.2014
Autor: highlandgold

Hallo,
ich habe das bsp. :

man berechne die quadratische parabel , wenn der scheitel des punktes S(-1,-4) ist und eine nullstelle bei x=3 liegt!

meine idee:

scheitelberechnung  ist : x=b/2a

f(x)= a(x-xs)²+ys
0=a*4²+16
a=-1

b=2a*x
b=-6

ist das bis jetzt richtig?

also hab ich die fkt.:

f(x)= -x²-6x+c

wie komme ich auf das c??

bitte um rückschrift!

danke


        
Bezug
parabel bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:51 Di 22.04.2014
Autor: Sax

Hi,

> Hallo,
>  ich habe das bsp. :
>  
> man berechne die quadratische parabel , wenn der scheitel
> des punktes S(-1,-4) ist und eine nullstelle bei x=3
> liegt!
>  
> meine idee:
>  
> scheitelberechnung  ist : x=b/2a

Das kommt darauf an, was a und b bedeuten.
Für die Normalform  [mm] y=a*x^2+b*x+c [/mm]  der Parabel gilt, dass der Scheitelpunkt den x-Wert  [mm] x_s=-\bruch{b}{2a} [/mm]  hat.

>  

Neuer Ansatz :

> f(x)= a(x-xs)²+ys

ist ok, aber

>  0=a*4²+16

ist falsch, weil [mm] y_s=-4 [/mm] ist und nicht 16.

>  a=-1
>  
> b=2a*x
> b=-6
>  
> ist das bis jetzt richtig?
>  
> also hab ich die fkt.:
>  
> f(x)= -x²-6x+c
>  
> wie komme ich auf das c??
>  
> bitte um rückschrift!
>  
> danke
>  

Es gibt drei Formen der Parabel und dementsprechend drei Wege, diese Aufgabe zu lösen.

1. Die Normalform  [mm] y=ax^2+bx+c [/mm]
Einsetzen der drei Punkte S=(-1|-4), [mm] N_1=(3|0) [/mm] und [mm] N_2=(-5|0) [/mm] (Symmetrieeigenschaft der Parabel wurde ausgenutzt) liefert drei Gleichungen für die Parameter a, b, c.

2. Die Scheitelpunktform  [mm] y=a*(x-x_s)^2+y_s [/mm]
kann gut benutzt werden, weil S gegeben ist, das hast du ja gemacht :  [mm] y=a*(x+1)^2-4 [/mm] . Durch Einsetzen von [mm] N_1 [/mm] kann man a berechnen, die Normalform ergibt sich durch Ausmultiplizieren und Zusammenfassen.

3. Die Nullpunktsform  [mm] y=a*(x-x_{01})*(x-x_{02}) [/mm]
ist ebenfalls möglich, mit [mm] x_{01}=3 [/mm] und [mm] x_{02}=-5 [/mm] (s.o.) ergibt sich  $ y=a*(x-3)*(x+5) $ und Einsetzen von S liefert a. Die Normalform ergibt sich durch Ausmultiplizieren und Zusammenfassen.

Gruß Sax.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]