matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungpartielle Integration
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integralrechnung" - partielle Integration
partielle Integration < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

partielle Integration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:46 Sa 17.03.2007
Autor: n3cRo

Aufgabe
Integriere [mm] x^2 [/mm] * [mm] cos(x^3) [/mm]

Hallo,
ich bin mir ziemlich sicher, das partielle Integration anzuwenden ist. Wenn ich allerdings [mm] x^2 [/mm] als Funktion wähle und [mm] cos(x^3) [/mm] als Ableitung, habe ich das Problem das ich [mm] cos(x^3) [/mm] integrieren muss und das kann Derive leider auch nicht. Wie muss ich vorgehen?

        
Bezug
partielle Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 18:01 Sa 17.03.2007
Autor: VNV_Tommy

Hallo n3cRo!

> Integriere [mm]x^2[/mm] * [mm]cos(x^3)[/mm]
>  Hallo,
>  ich bin mir ziemlich sicher, das partielle Integration
> anzuwenden ist. Wenn ich allerdings [mm]x^2[/mm] als Funktion wähle
> und [mm]cos(x^3)[/mm] als Ableitung, habe ich das Problem das ich
> [mm]cos(x^3)[/mm] integrieren muss und das kann Derive leider auch
> nicht. Wie muss ich vorgehen?

Versuchs mal besser mit der Substitution [mm] x^{3}=z. [/mm] Dann ergibt sich [mm] \bruch{dz}{dx}=3x^{2}. [/mm] Daraus folgt dann [mm] dx=\bruch{1}{3x^{2}}dz [/mm] wodurch dein zu bestimmendes Intgral dann

[mm] \integral_{}^{}{x^{2}*cos(z)*\bruch{1}{3x^{2}} dz}=\bruch{1}{3}\integral_{}^{}{cos(z) dz} [/mm]

lautet.

Den weiteren Rechneweg solltest du dann spielend selbst hinbekommen (Resubstitution am Schluss nicht vergessen!). ;-)

Gruß,
Tommy

Bezug
                
Bezug
partielle Integration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:02 Sa 17.03.2007
Autor: n3cRo

OK, soweit habe ich es verstanden. Aber mal eine weitere Frage, warum hätte ich in meiner Klausur angeben müssen "Die Funktion besitzt eine Stammfunktion F mit F(x) > 0 für alle x Element R".

Die Werte von F(x) schwanken doch durch den Sinus und sind damit z.T. auch kleiner 0 oder?

Bezug
                        
Bezug
partielle Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 19:10 Sa 17.03.2007
Autor: schachuzipus

Hallo,

Nun der sin wird ja minimal -1.

Stammfunktionen sind ja nicht eindeutig, weil zu ihnen noch die Integrationskonstante gehört, zu f(x) ist F(x)+C [mm] \bold{eine} [/mm] von unendlich vielen Stammfunktionen ;-)

Wähle also einfach als eine Stammfunktion sin(x)+10 oder [mm] sin(x)+36,46\pi, [/mm]

dann ist die sicherlich für alle [mm] x\in \IR \ge [/mm] 0 (sogar >0)

Gruß

schachuzipus

Bezug
                                
Bezug
partielle Integration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:16 Sa 17.03.2007
Autor: n3cRo

Wieso wird der Sinus minimal -1, ich würd sagen er wird 2pi periodisch genau -1 und wenn ich den Graphen der Stammfunktion in Derive plotten lasse schwankt er ja auch zwischen +/- 1/3. Also warum ist obige Bedingung richtig??

Bezug
                                        
Bezug
partielle Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 19:31 Sa 17.03.2007
Autor: schachuzipus

Moin nochmal,

also der Wertebereich von [mm] F(x)=\bruch{1}{3}sin(x) [/mm] ist [mm] [-\bruch{1}{3};\bruch{1}{3}]. [/mm]

Das heißt für alle [mm] x\in \IR [/mm] liegen die Werte von [mm] \bruch{1}{3}sin(x) [/mm] zwischen [mm] -\bruch{1}{3} [/mm] und [mm] \bruch{1}{3}, [/mm] wobei sich alles mit einer Periode von [mm] 2\pi [/mm] wiederholt, was aber für die Werte von F(x) keine Rolle spielt.

Wählst du aber zu f die Stammfunktion [mm] \tilde{F}(x)=\bruch{1}{3}sin(x)+5, [/mm] so liegen die Funktionswerte nicht mehr im Intervall [mm] \left[-\bruch{1}{3};\bruch{1}{3}\right], [/mm] sondern sind allesamt aus dem Intervall [mm] \left[-\bruch{1}{3}+5;\bruch{1}{3}+5\right]=\left[\bruch{14}{3};\bruch{16}{3}\right] [/mm]

Also sämtlich größer als Null.

[mm] \tilde{F}(x)=\bruch{1}{3}sin(x)+5 [/mm] war nur ein Bsp, ich hätte auch die Stammfunktion [mm] G(x)=\bruch{1}{3}sin(x)+1 [/mm] nehmen können.

Überlege doch mal als kleine Übg, in welchem Intervall dann die Funktionswerte liegen.

Du musst nur schauen, dass die Funktionswerte durch deine Wahl größer Null werden.

Ok soweit?


Lieben Gruß

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]