matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheoriepoissonverteilte ZV
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Wahrscheinlichkeitstheorie" - poissonverteilte ZV
poissonverteilte ZV < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

poissonverteilte ZV: Summe der ZV
Status: (Frage) beantwortet Status 
Datum: 14:01 Mo 03.06.2013
Autor: clemenum

Aufgabe
Es seien $X,Y$ zwei poissonverteilte unabhängige Zufallsvariablen mit Parametern [mm] $\lambda, \mu.$ [/mm] Welche Verteilung hat nun $X+ Y $ ?



Nun, beide Zufallsvariablen sind ja eigentlich Funktionen mit Werten, die durch $f(k; [mm] \lambda) [/mm] = [mm] \frac{ \lambda ^k e^{-\lambda }} [/mm] {k!}$ bzw.
$g(k; [mm] \mu) [/mm] = [mm] \frac{ \mu^k e^{-\mu}} [/mm] {k!}$  beschrieben werden.

Ich vermute, dass man nun die beiden Funktionen $f,g$ addieren muss um die Verteilung von $X+Y$ zu erhalten. Ich muss ja zeigen: $f + g = [mm] \frac{(\lambda + \mu)^k e^{ - \lambda - \mu }}{k!}. [/mm] $ Ich habe aber leider keine Idee, wie ich hier die Unabhängigkeit der Zufallsvariablen einpacken kann und bitte hier um einen Tipp.


        
Bezug
poissonverteilte ZV: Antwort
Status: (Antwort) fertig Status 
Datum: 14:18 Mo 03.06.2013
Autor: schachuzipus

Hallo clemenum,
> Es seien [mm]X,Y[/mm] zwei poissonverteilte unabhängige
> Zufallsvariablen mit Parametern [mm]\lambda, \mu.[/mm] Welche
> Verteilung hat nun [mm]X+ Y[/mm] ?

>
>

> Nun, beide Zufallsvariablen sind ja eigentlich Funktionen
> mit Werten, die durch [mm]f(k; \lambda) = \frac{ \lambda ^k e^{-\lambda }} {k!}[/mm]
> bzw.
> [mm]g(k; \mu) = \frac{ \mu^k e^{-\mu}} {k!}[/mm] beschrieben
> werden.

>

> Ich vermute, dass man nun die beiden Funktionen [mm]f,g[/mm]
> addieren muss um die Verteilung von [mm]X+Y[/mm] zu erhalten. Ich
> muss ja zeigen: [mm]f + g = \frac{(\lambda + \mu)^k e^{ - \lambda - \mu }}{k!}.[/mm]
> Ich habe aber leider keine Idee, wie ich hier die
> Unabhängigkeit der Zufallsvariablen einpacken kann und
> bitte hier um einen Tipp.

Was du hier brauchst, ist die Faltung zweier ZVen.

[mm]P(X+Y=k) \ = \ \sum\limits_{n=0}^kP(X=n)\cdot{}P(Y=k-n) \ = \ \ldots[/mm]

Einsetzen und ausrechnen, du weißt ja schon, was rauskommen muss ...


Gruß

schachuzipus

Bezug
                
Bezug
poissonverteilte ZV: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:31 Mo 03.06.2013
Autor: clemenum

Super, danke für deinen hilfreichen Hinweis, Schachuzipus; damit komm ich nun sicher allein klar! :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]