matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungproblem bei gleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Differenzialrechnung" - problem bei gleichung
problem bei gleichung < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

problem bei gleichung: vierten grades
Status: (Frage) beantwortet Status 
Datum: 14:26 So 20.01.2008
Autor: noobo2

Aufgabe
Lösen einer gleichung bei der kurvendiskussion

hi,
ich steh grad irgendwie auf dem schlauch, da ich nicht weis wie ich folgende gleichung lösen soll
[mm] 31,2=\bruch{5}{98}*t^4-\bruch{65}{49}*t³+\bruch{845}{98}*t²+30 [/mm]

hat da irgendjemand nen lösungsansatz für mciha ußer es in derive einzutippen??

        
Bezug
problem bei gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:32 So 20.01.2008
Autor: Slartibartfast

Hallo noobo2,

von Hand sieht das ein wenig lästig aus, aber hier hilft eine Polynomdivision. Erste Nullstelle raten und dann wie in der 4. Klasse dividieren.

Gruß
Slartibartfast

Bezug
                
Bezug
problem bei gleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:35 So 20.01.2008
Autor: noobo2

sorry das ich es net ganz verstanden hab aber ich such doch nicht die nullstellen der funktion ich such ja die x werte für die y = 31,2 ist und mit der
polynomdivision kann cih doch nur die nullstellen der funktion ausrechnen

Bezug
                        
Bezug
problem bei gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:40 So 20.01.2008
Autor: Slartibartfast

richtig, du bringst die 31,2 auf die andere Seite und suchst diejenigen Stellen, die Lösung der Gleichung sind - auch Nullstellen genannt.
Natürlich suchst du im Endeffekt alle Stellen, an denen die Funktion den Wert 31,2 annimmt, aber genau das sind die Nullstellen der neuen Funktion, bei der du für y=31,2 eingesetzt hast.
Nichts anderes machst du doch auch bei Extremwertuntersuchungen, du suchst die Nullstellen der ersten Ableitung - welches die Extremstellen der ursprünglichen Funktion sind.

Gruß
Slartibartfast

Bezug
        
Bezug
problem bei gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:41 So 20.01.2008
Autor: steppenhahn

Man könnte aber auch "hausbacken" durch ausklammern vorgehen:

31.2 = [mm] \bruch{5}{98}*t^{4}-\bruch{130}{98}*t^{3}+\bruch{845}{98}*t^2+30 [/mm]

Mal 98, durch 5 führt auf:

[mm] \bruch{15288}{25} [/mm] = [mm] t^{4}-26*t^3+169*t^2+588 [/mm]

Minus 588:

[mm] \bruch{588}{25} [/mm] = [mm] t^{4}-26*t^3+169*t^2 [/mm]

Nun fällt auf: Man kann [mm] t^{2} [/mm] ausklammern!

[mm] \bruch{588}{25} [/mm] = [mm] t^{2}*(t^{2}-26*t+169) [/mm]

Man erkennt die Binomi:

[mm] \bruch{588}{25} [/mm] = [mm] t^{2}*(t-13)^{2} [/mm]

Nun kann man Wurzel ziehen:

[mm] \pm\bruch{\wurzel{588}}{5} [/mm] = t*(t-13)

Diese quadratische Gleichung kannst du lösen; beachte, dass die linke Seite sowohl negativ als auch positiv sein kann!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]