punkt auf gerade < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
 
 
   | 
  
 
  
   
    
     
	  
	  
 | Aufgabe |  |  liegt der punkt P(1+2a/2-7a/-1-2a) auf einer gerade? stelle gegebenenfalls eine gleichung der gerade auf!  |  
  
wie kann ich denn das herausfinden und ausrechnen?
 
danke
 
 
      | 
     
    
   | 
  
 |          | 
 
 
   | 
  
 
  
   
    
     
	  
	   Hallo Erika!
 
 
> liegt der punkt P(1+2a/2-7a/-1-2a) auf einer gerade? stelle 
 
> gegebenenfalls eine gleichung der gerade auf!
 
>  wie kann ich denn das herausfinden und ausrechnen?
 
>  danke 
 
 
Aufgrund des Parameters a, welcher sich in den Komponenten des Punktes P befindet, würde man hier nicht von einem Punkt, sondern von einer Punkteschar sprechen.
 
 
Entweder könntest du die Aufgabe lösen, indem du für verschiedene a Punkte bestimmst und dann prüfst ob, diese auf einer Geraden liegen (du weißt, wie  man das macht?) oder du betrachtest dir P mal genauer. Die Punkte der Schar bestehen in jeder Komponente aus einer konstanten Zahl und aus einer von a abhängigen Zahl. Würde man dies gesondert aufschreiben, sähe dies wie folgt aus:
 
 
P: [mm] \overrightarrow{x}=\vektor{1+2a \\ 2-7a \\ -1-2a}=\vektor{1 \\ 2 \\ -1}+\vektor{2a \\ -7a \\ -2a}
 [/mm] 
 
Bei der von a abhängigen Komponente könnte man nun noch a ausklammern und erhält:
 
 
P: [mm] \overrightarrow{x}=\vektor{1 \\ 2 \\ -1}+a\vektor{2 \\ -7 \\ -2}
 [/mm] 
 
Bei genauer Betrachtung stellt man fest, daß dies nun schon die Geradengleichung ist.  
 
 
Gruß,
 
Tommy
 
 
      | 
     
    
   | 
  
 
 |   
  
   |