matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSteckbriefaufgabenquadratische logarithmusfkt
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Steckbriefaufgaben" - quadratische logarithmusfkt
quadratische logarithmusfkt < Steckbriefaufgaben < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Steckbriefaufgaben"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

quadratische logarithmusfkt: Frage
Status: (Frage) beantwortet Status 
Datum: 16:11 So 12.12.2004
Autor: mariagie

ersteinmal 100 dank (wirklich aufrichtig) an loddar und daox!!!!!!!!!!!-ich hoffe ihr lest das!!!

hallo liebe matheinteressierte ich habe da mal eine frage
undzwar hab ich einen lösungsansatz aber der ist nich schlüssig.
naja erstmal die rfrage:

eine quadrat. fkt q(x) verläuft durch p(0;2ln2) und hat den tp(3/2;-1/4ln2)
ermitteln sie die gleichung (kontrollergebnis:q(x)=ln2(x²-3x+2)
ich habe diese frage in keinem forum auf anderen internetseiten gestellt
also da habe ich versucht ein gleichungssystem mit der formel q(x)=aX²+bx+c zu bilden jedoch kommt für a und b wahre aussage raus und nur das ergebnis für c wird 2ln2
aber das kann doch nich richtig sein oder??
bitte helft mir

        
Bezug
quadratische logarithmusfkt: Antwort
Status: (Antwort) fertig Status 
Datum: 16:53 So 12.12.2004
Autor: Daox

Hi!
Mit dem Kontrollergebniss kann man ja sehen, dass a = ln2 und b = -3ln2 sein muss, und c wie du richtig gerechnet hast 2ln2 ist.

Denn I.  p(0;2ln2) => q(x)= a*0²+b*0+c=2ln2 ; c=2ln2

II. TP an der Stelle  [mm] \bruch{3}{2} [/mm] : q'(x) = [mm] 2*\bruch{3}{2}*a+b [/mm] = 0
     3a + b = 0
     b = -3a

Dank erneuter Korrektur von Loddar, hier die Berichtigung^^
III. [mm] tp(\bruch{3}{2};-\bruch{1}{4}ln2) [/mm] => q(x)= [mm] a*(\bruch{3}{2})²+b*\bruch{3}{2}+2ln2= -\bruch{1}{4}ln2 [/mm]
[mm] \bruch{9}{4}a+\bruch{3}{2}b= -\bruch{9}{4}ln2 [/mm] |*4
9a+6b= -9ln2

Nun II in III einsetzen:
9a+6(-3a)= -9ln2
-9a= -9ln2
a=ln2

q(x)=ln2x²-3ln2x+2ln2=ln2(x²-3x+2)

Nur komme ich nicht auf a = ln2. Ist der tp wirklich bei (3/2;-1/4ln2)?


Bezug
                
Bezug
quadratische logarithmusfkt: Tiefpunkt
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:04 So 12.12.2004
Autor: Loddar

Die o.g. Funktion q(x) entsteht für den Tiefpunkt
[mm] $T(\bruch{3}{2}; [/mm] - [mm] \bruch{1}{4}*ln2)$ [/mm]

Dann lautet Gleichung (III):
[mm]a*(\bruch{3}{2})^2 + b*\bruch{3}{2} + 2*ln2= -\bruch{1}{4}*ln2 [/mm]
Daraus entsteht auch wirklich mit einsetzen für b = -3a: a = ln2.

LG Loddar

Bezug
                        
Bezug
quadratische logarithmusfkt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:14 So 12.12.2004
Autor: Daox

Aso, ich dachte es heißt  [mm] \bruch{-1}{4ln2} [/mm] und bin somit nicht zur richtigen Lösung gekommen...
Ich werde zu alt für sowas...

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Steckbriefaufgaben"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]