matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationstheoriereelle Fourierreihe, angabe.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integrationstheorie" - reelle Fourierreihe, angabe.
reelle Fourierreihe, angabe. < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

reelle Fourierreihe, angabe.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:34 So 07.10.2012
Autor: Lu-

Aufgabe
Bestimme die reelle Fourierreihe der Funktion:
f(x) = $ [mm] \begin{cases} 0, & \mbox{für } 0<=x<=\pi \\ 1, & \mbox{für } 0 < x < 2\pi \end{cases} [/mm] $




Ich finde die Angabe etwas komisch.

$ [mm] a_k [/mm] $ = $ [mm] 1/\pi \int_0^{2\pi} [/mm] $ f(x) cos(kx) dx  = [mm] 1/\pi [/mm] ( [mm] \int_\pi^{2\pi} [/mm] cos(kx)dx) [mm] =1/\pi \frac{sin(kx)}{k}= [/mm] 0

$ [mm] b_k [/mm] $ = $ [mm] 1/\pi \int_0^{2\pi} [/mm] $ f(x) sin(kx) dx
[mm] =1/\pi [/mm] ( [mm] \int_\pi^{2\pi} [/mm]  sin(kx)dx) =- [mm] 1/\pi \frac{cos(kx)}{k} [/mm] = [mm] -1/\pi [/mm] ( 1/k - [mm] \frac{(-1)^k}{k}) [/mm] =
0 für k gerade  und [mm] -\frac{2}{\pi k} [/mm] für k ungerade



Ich weiß nicht ob ich die Funktion richtig verstanden habe.
Und noch eine andere Frage: wenn [mm] a_k=0 [/mm] ist müsste dann die Funktion nicht ungerade sein?also f(-x)=-f(x)???

        
Bezug
reelle Fourierreihe, angabe.: ao berechnen
Status: (Antwort) fertig Status 
Datum: 16:58 So 07.10.2012
Autor: Infinit

Hallo Lu,
die Sinuskoeffizienten hast Du richtig berechnet, bei den Cosinuskoeffzienten allerdings hast Du den Term [mm] a_0 [/mm] nicht ausgerechnet.
[mm] a_0 = \bruch{1}{\pi} \int_{\pi}^{2\pi} 1 \, dx = 1 [/mm]
Der Term [mm]\bruch{a_0}{2} [/mm] liefert also gerade 1/2 und ist der einzige a-Term.
Viele Grüße,
Infinit


Bezug
                
Bezug
reelle Fourierreihe, angabe.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:17 So 07.10.2012
Autor: Lu-

Danke, ich wollte ja nur wissen ob ich die Angabe richtig interpretiert habe ;)

Mfg LU

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]