matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und Reihenrekursive folge
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Folgen und Reihen" - rekursive folge
rekursive folge < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

rekursive folge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:44 Mi 06.02.2008
Autor: Phecda

hallo
tut mir leid dass ich heute so viel poste... bald schreib ich ne klausur :(

ein problem das sich bei mir eignt. öfters stellt sind rekursive folgen bzw. reihen, wenn man sie auf konvergenz untersuchen soll.

bsp.
a1 = 1
[mm] a_{n+1}=\bruch{4+3*a_{n}}{3+2*a_{n}} [/mm]

ja sowas zum beispiel. diese folge soll auf konvergenz untersucht werden und ihr grenzwert bestimmt werden.

was ist bei solchen fragestellungen die heransgehenweise?



        
Bezug
rekursive folge: Antwort
Status: (Antwort) fertig Status 
Datum: 15:57 Mi 06.02.2008
Autor: leduart

Hallo
allgemeines Vorgehen:
WENN das Ding nen GW g hat gilt für n gegen [mm] \infty: a_n=a_{n+1}=g [/mm]
setz das  in die Formel ein, und du hast den GW.
Mathematisch ist das illegal, weil es die Existenz des GW voraussetzt. Aber strategisch ist es gut.
Hier findest du etwa dann [mm] g=\wurzel{2} [/mm]
2. Schritt. Nachweis, dass die Folge ab irgend einem n monoton wächst (oder fällt) und nach oben (bzw. unten) beschränkt ist. das hat die Existenz des GW zur Folge.
Wieder strategisch: was tun die ersten paar Glieder. oft erfolgreich : zuerst grobe Schranke finden hier etwa [mm] a_n<2 [/mm] dann die Monotonie, wobei man die Schranke schon benutzt.
Gruss leduart

Bezug
                
Bezug
rekursive folge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:07 Mi 06.02.2008
Autor: Phecda

ok du sprichst davon, dass die methode zur grenzwertbestimmung illegal ist. wie schreib ich das denn in der klausur hin, damit die mir nix abziehen?
und auf was gründet diese methode?
cauchyfolge?, dass der abstand zweier folgeglieder immer geringer wird?

danke leduart

Bezug
                        
Bezug
rekursive folge: Antwort
Status: (Antwort) fertig Status 
Datum: 16:19 Mi 06.02.2008
Autor: leduart

Hallo
2 Methoden für die Kl:
1. du schreibst: Falls es einen GW gibt muss er sein:
2. du rechnest ihn halt heimlich aus, und nennst ihn noch nicht GW sondern Nebenrechnung! Dann zeigst du  erst die Existenz und rechnest ihn dann offiziell.
Cauchyfolge ist gut, aber bitte allgemeiner [mm] |a_n-a_{n+m}| [/mm] wird immer kleiner (es gibt auch rekursive Folgen mit [mm] a_n,a_{n-1}a_{n+1} [/mm] usw) am einfachsten ist wenn g ex. ist [mm] \lim{a_n}=\lim{a_{n+m}} [/mm]
Gruss leduart

Bezug
                                
Bezug
rekursive folge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:24 Mi 06.02.2008
Autor: Phecda

hi

wie zeig ich denn offiziel, dass das ganze gegen wurzel2 konvergiert.

ok so in der theorie finde ich das alles nachvollziehbar, aber ich tu mir schwer z.b. die schranken festzulegen,
oder wie zeige ich denn die monotonie. okay a(n+1)> oder < a(n) und dann hab ich zumschluss da stehen. [mm] a^2(n)> [/mm] 2 was bedeutet das nun

Bezug
                                        
Bezug
rekursive folge: Vorgehensweise
Status: (Antwort) fertig Status 
Datum: 16:49 Mi 06.02.2008
Autor: Roadrunner

Hallo Phecda!


Nochmal zur Vorgehensweise ...

Berechne Dir zunächst die ersten Folgenglieder, evtl. so 5 bis 6. Daraus sollte man dann schon erkennen können, ob hier eine Monotonie vorliegt. Und man erhält dann auch einen Verdacht bezüglich der Besschränktheit.

Beide Eigenschaften (Beschränktheit und Monotonie) weist man bei rekursiven Folgen in den meisten Fällen mittels vollständiger Induktion nach.

Aus der Beschränktheit und der Monotonie folgt dann unmittelbar die Konvergenz, die Du dann über den Ansatz $g \ = \ [mm] \limes_{n\rightarrow\infty}a_n [/mm] \ = \ [mm] \limes_{n\rightarrow\infty}a_{n+1}$ [/mm] löst.


Gruß vom
Roadrunner


Bezug
                                                
Bezug
rekursive folge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:51 Mi 06.02.2008
Autor: Phecda

hi okay verstanden .. nur das problem ist wie zeige ich bsp. monotonie oder beschränktheit mit induktion nach?


Bezug
                                                        
Bezug
rekursive folge: Antwort
Status: (Antwort) fertig Status 
Datum: 18:51 Mi 06.02.2008
Autor: leduart

Hallo
Das ist immer etwas verschieden, man muss halt abschätzen. Das kann man nicht allgemein sagen. Versuchs mit einigen Folgen, und zeige wo du scheiterst.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]