matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche Differentialgleichungenresonanz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Gewöhnliche Differentialgleichungen" - resonanz
resonanz < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

resonanz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:40 Mi 06.02.2008
Autor: mar.kus

Aufgabe
Welchen Ansatz machen Sie bei der gegebenen partikulären DGL?

y^(4)-y^(2)+3y^(2)+5y^(1)=g(x)

a) 3x*cos(2x)
b) e^(x) * sin(x)

Hallo,

also ich habe die Eigenwerte der DGL gelöst.

[mm] \lambda_1 [/mm] = 0
[mm] \lambda_2 [/mm] = -1
[mm] \lambda_{3,4}= [/mm] 1 [mm] \pm [/mm] 2i

Jetzt habe ich das Problem das ich nicht weis wie ich den Ansatz mache.

zu a) In dem Fall ist der Ansatz ja [mm] y_p [/mm] = x*(A*sin (2x)+B*cos(2x))
Muss ich die Lösung noch mit [mm] x^2 [/mm] erweitern, da ja [mm] \lambda_{3,4} [/mm] eine doppelte Nullstelle ist?

allgemein) Kann mir jemand kurz nochmal das mit der Resonanz einer DGL erklären?

Danke
Markus

        
Bezug
resonanz: Antwort
Status: (Antwort) fertig Status 
Datum: 18:14 Mi 06.02.2008
Autor: MathePower

Hallo Markus,

> Welchen Ansatz machen Sie bei der gegebenen partikulären
> DGL?
>  
> y^(4)-y^(2)+3y^(2)+5y^(1)=g(x)
>  
> a) 3x*cos(2x)
>  b) e^(x) * sin(x)
>  Hallo,
>  
> also ich habe die Eigenwerte der DGL gelöst.
>  
> [mm]\lambda_1[/mm] = 0
>  [mm]\lambda_2[/mm] = -1
>  [mm]\lambda_{3,4}=[/mm] 1 [mm]\pm[/mm] 2i

Aufgrund dieser Werte lautet die homogene DGL wie folgt:

[mm]y^{\left (4 \right )} + y^{\left (3 \right )}+5 y''+5y'=0[/mm]

>  
> Jetzt habe ich das Problem das ich nicht weis wie ich den
> Ansatz mache.
>  
> zu a) In dem Fall ist der Ansatz ja [mm]y_p[/mm] = x*(A*sin
> (2x)+B*cos(2x))
>  Muss ich die Lösung noch mit [mm]x^2[/mm] erweitern, da ja
> [mm]\lambda_{3,4}[/mm] eine doppelte Nullstelle ist?

[mm]\lambda_{3,4}[/mm] ist keine doppelte Nullstelle, sondern [mm]\lambda_3[/mm] und [mm]\lambda_4[/mm] sind konjugiert komplexe Nullstellen, d.h [mm]\lambda_{3} * \lambda_{4}= {\vmat {\lambda_3}}^2={\vmat {\lambda_4}}^2[/mm]

>  
> allgemein) Kann mir jemand kurz nochmal das mit der
> Resonanz einer DGL erklären?

Der Resonanzfall ist der Fall, wenn die Störfunktion [mm]g\left ( x \right )[/mm] eine Lösung der homogenen DGL  ist.

>  
> Danke
>  Markus

Gruß
MathePower

Bezug
                
Bezug
resonanz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:28 Mi 06.02.2008
Autor: mar.kus

Und wie finde ich den partiklären Ansatz für

s(x)= 3x*cos (2x) ?

In der Lösung steht was von:

[mm] y_P [/mm] = 3* Re [mm] *Y_P [/mm] = (A+B*x) [mm] *e^{2I*x} [/mm]

Wie kommt man darauf?

Bezug
                        
Bezug
resonanz: Antwort
Status: (Antwort) fertig Status 
Datum: 18:55 Mi 06.02.2008
Autor: MathePower

Hallo Markus,

> Und wie finde ich den partiklären Ansatz für
>  
> s(x)= 3x*cos (2x) ?
>  
> In der Lösung steht was von:
>  
> [mm]y_P[/mm] = 3* Re [mm]*Y_P[/mm] = (A+B*x) [mm]*e^{2I*x}[/mm]
>  
> Wie kommt man darauf?

Ich kenn das nur mit reellen Ansätzen.

Da [mm]s\left ( x \right )= 3x*\cos \left ( 2x \right )[/mm] keine Lösung der homogenen DGL ist, macht man hier den Ansatz [mm]y_{p}=\left ( A_{1}x+B_{1} \right ) \sin \left ( 2x \right ) + \left ( A_{2}x+B_{2} \right ) \cos \left ( 2x \right ) [/mm] , weil hier ein Polynom 1. Grades in Kombination mit einer trigonometrischen Funktion auftritt.

Gruß
MathePower

Bezug
                                
Bezug
resonanz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:56 Mi 06.02.2008
Autor: mar.kus

Also kann man die einzelnen Therme einfach miteinander multiplizieren?

Danke für die Hilfe und eine schöne Woche
Markus

Bezug
                                        
Bezug
resonanz: Antwort
Status: (Antwort) fertig Status 
Datum: 19:07 Mi 06.02.2008
Autor: MathePower

Hallo Markus,

> Also kann man die einzelnen Therme einfach miteinander
> multiplizieren?

Welche Terme?

>  
> Danke für die Hilfe und eine schöne Woche

Danke, gleichfalls.

>  Markus

Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]