matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysisstetig und beschränkt
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis" - stetig und beschränkt
stetig und beschränkt < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

stetig und beschränkt: aufgabe
Status: (Frage) beantwortet Status 
Datum: 19:02 So 29.05.2005
Autor: wolf

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:

hallo zusammen und ersteinmal danke für die anregungen zu meiner letzten frage...hat dann alles ganz gut funktioniert..

hier meine aufgabe..zeigen sie das die funktion f(x)= sin [mm] \bruch{ \pi}{x} [/mm]
auf dem intervall (0,1) stetig und beschränkt , aber nicht gleichmäßig stetig ist.

anfänge hab ich noch keine...vielen dank schonmal für ideen etc.

        
Bezug
stetig und beschränkt: Antwort
Status: (Antwort) fertig Status 
Datum: 19:25 So 29.05.2005
Autor: SEcki


> Ich habe diese Frage auch in folgenden Foren auf anderen
> Internetseiten gestellt:

Äh, ja, welchen denn?

> hier meine aufgabe..zeigen sie das die funktion f(x)= sin
> [mm]\bruch{ \pi}{x}[/mm]
>  auf dem intervall (0,1) stetig und
> beschränkt , aber nicht gleichmäßig stetig ist.

Stetig und beschränkt sind klar, oder? Zur gleichmäßigen Stetigkeit: hattet ihr "f glm. Stetig auf [m](a,b) [/m] gdw. f stetig auf [m][a,b][/m] fortsetzbar ist? Wenn nicht, überlegst du dir das ambesten direkt: die Funktion osziliert gegen die y-Achse. Jetzt nehme mal an, sie wäre glm. stetig, und wähle als Epsilon einfach mal [m]\frac{1}{10}[/m] - kannst du jetzt ein x nahe bei 0 finden, daß diese Annahme zum Widerspruch führt?

SEcki

Bezug
        
Bezug
stetig und beschränkt: Antwort
Status: (Antwort) fertig Status 
Datum: 19:34 So 29.05.2005
Autor: terrier

stetigkeit müsste über epsilon-delta kriterium zu machen sein,beschränktheit sollte einfach aus dem verlauf der sinusfunktion klar sein da sie nur werte zwischen -1,1 annimmt.und für gleichmässig stetig probier mal kleine x,y aus, ein kleines epsiloon und zeig das aus x-y <delta => f(x) - f(y)>epsilon.aber da bin ich mir wirklich nicht sicher,aber denke müsste in der nähe von null klappen.mehr weis ich auch nicht

Bezug
                
Bezug
stetig und beschränkt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:45 Mo 30.05.2005
Autor: wolf

danke für die tips werde in nächsten 2 tagen meine lösung mal reinstellen...

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]