matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenstetigkeit/differenzierbarkeit
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Funktionen" - stetigkeit/differenzierbarkeit
stetigkeit/differenzierbarkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

stetigkeit/differenzierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:42 Mi 28.01.2009
Autor: simplify

Aufgabe
Betrachte die Zackenfunktion [mm] g:\IR \to \IR [/mm]    
                                 [mm] x\mapsto|x-[x+\bruch{1}{2}]| [/mm] ,
wobei die Gaussklammer [y] die groesste ganze Zahl kleiner oder gleich y bezeichnet.
Die Funktion g ist periodisch, g(x+1)=g(x) , sowie auf [mm] \IR \backslash \bruch{1}{2}\IZ [/mm] differenzierbar.
Bilde nun die Summe [mm] f(x)=\summe_{k=0}^{\infty} \bruch{1}{2^{k}}g(2^{k}*x) [/mm]
Zeige, dass [mm] f:\IR \to \IR [/mm]  ueberall stetig aber nirgends differenzierbar ist.


hallo liebe leute... hab keine ahnung was ich hier wie machen kann um das zu zeigen...HELFT MIR!!!...BITTE



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
stetigkeit/differenzierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 18:25 Mi 28.01.2009
Autor: abakus


> Betrachte die Zackenfunktion [mm]g:\IR \to \IR[/mm]    
> [mm]x\mapsto|x-[x+\bruch{1}{2}]|[/mm] ,
> wobei die Gaussklammer [y] die groesste ganze Zahl kleiner
> oder gleich y bezeichnet.
>  Die Funktion g ist periodisch, g(x+1)=g(x) , sowie auf [mm]\IR \backslash \bruch{1}{2}\IZ[/mm]
> differenzierbar.
>  Bilde nun die Summe [mm]f(x)=\summe_{k=0}^{\infty} \bruch{1}{2^{k}}g(2^{k}*x)[/mm]

Die einzelnen Summanden sind alles Zackenkurven.
[mm] \bruch{1}{2}g(2*x) [/mm] ist halb so hoch wie g(x), hat aber die Zacken doppelt so dicht.
[mm] \bruch{1}{2^2}g(2^2*x) [/mm] hat nur noch ein Viertel der Zackenhöhe von g(x), dafür sind sie viermal so dicht.
Die Summe von dem ganzen Zeug liefert eine Zackenlinie, auf deren ursprünglich geraden Linienstücken kleine Zacken wachsen und den ursrünglich geraden Linienstücken der kleinerer Zacken wachsen noch kleinere Zacken.....
Die Summe stetiger Zackenfunktionen ist stetig, aber die "Dichte" der Knickstellen wächst immer mehr, sodass es kein (noch so kleines) Intervall ohne Knickstellen gibt.
Gruß Abakus




>  
> Zeige, dass [mm]f:\IR \to \IR[/mm]  ueberall stetig aber nirgends
> differenzierbar ist.
>  
>
> hallo liebe leute... hab keine ahnung was ich hier wie
> machen kann um das zu zeigen...HELFT MIR!!!...BITTE
>  
>
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]