matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigessupM < inf => supM - e < x
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis-Sonstiges" - supM < inf => supM - e < x
supM < inf => supM - e < x < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

supM < inf => supM - e < x: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:49 Sa 24.10.2009
Autor: ZodiacXP

Aufgabe
Zeige [mm] $\forall \varepsilon [/mm] > 0 [mm] \exists [/mm] x [mm] \in [/mm] M [mm] \subset \IR: supM-\varepsilon [/mm] < x$, wenn $sup M < [mm] \infty$ [/mm]


(sup ist der superior)

Meine Annahme:

$sup M < [mm] \infty \Rightarrow [/mm] sup M = a [mm] \in \IR$ [/mm]
Sei $x := a - [mm] \varepsilon [/mm] + 1$ so gilt:
[mm] $supM-\varepsilon [/mm] < x [mm] \gdw a-\varepsilon [/mm] < a - [mm] \varepsilon [/mm] + 1 [mm] \gdw [/mm] 0 < 1$ womit das x gefunden wäre.

Ist dem wirklich so oder ist das kein Beweis?

        
Bezug
supM < inf => supM - e < x: Antwort
Status: (Antwort) fertig Status 
Datum: 14:01 Sa 24.10.2009
Autor: rainerS

Hallo!

> Zeige [mm]\forall \varepsilon > 0 \exists x \in M \subset \IR: supM-\varepsilon < x[/mm],
> wenn [mm]sup M < \infty[/mm]
>  
> (sup ist der superior)

Supremum.

>  
> Meine Annahme:
>  
> [mm]sup M < \infty \Rightarrow sup M = a \in \IR[/mm]
>  Sei [mm]x := a - \varepsilon + 1[/mm]
> so gilt:
>  [mm]supM-\varepsilon < x \gdw a-\varepsilon < a - \varepsilon + 1 \gdw 0 < 1[/mm]
> womit das x gefunden wäre.
>  
> Ist dem wirklich so oder ist das kein Beweis?

Das stimmt so nicht, denn es ist nicht gezeigt, dass [mm] $x\in [/mm] M$ ist.

Gegenbeispiel:

[mm] M = (1/2,1) [/mm]

also ein offenes Intervall der Länge 1/2. Es ist offensichtlich [mm] $\sup [/mm] M=1$. In deiner Argumentation wäre also [mm] $x=-\varepsilon \notin [/mm] M$. Du darfst x nicht frei wählen, sondern musst die Definition des Supremums als kleinste obere Schranke von M benutzen.

Viele Grüße
   Rainer


Bezug
                
Bezug
supM < inf => supM - e < x: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:13 Sa 24.10.2009
Autor: ZodiacXP

Danke. Wie sollte man mit der Definition argumentieren?

sup M < [mm] $\infty \Rightarrow$ [/mm] Es gibt eine obere Schranke
Sei x genau diese kleinste obere Schranke folgt
$x - [mm] \varepsilon [/mm] < x$

(Erscheint mir ziemlich komisch.)

Bezug
                        
Bezug
supM < inf => supM - e < x: Antwort
Status: (Antwort) fertig Status 
Datum: 21:21 Sa 24.10.2009
Autor: rainerS

Hallo!

> Danke. Wie sollte man mit der Definition argumentieren?
>  
> sup M < [mm]\infty \Rightarrow[/mm] Es gibt eine obere Schranke
>  Sei x genau diese kleinste obere Schranke folgt
>  [mm]x - \varepsilon < x[/mm]

Das sollst du zeigen. Mach einen Widerspruchsbeweis! Nimm an, es gebe kein solches x. Also:

Annnahme: Für ein [mm] $\varepsilon [/mm] >0$ gilt: es gibt kein [mm] $x\in [/mm] M$ mit $x > [mm] \sup [/mm] M [mm] -\varepsilon$. [/mm] Mit anderen Worten: alle [mm] $x\in [/mm] M$ sind [mm] $\le \sup [/mm] M [mm] -\varepsilon$. [/mm] Kann dann [mm] $\sup [/mm] M$ die kleinste obere Schranke sein?

Viele Grüße
  Rainer

Bezug
                                
Bezug
supM < inf => supM - e < x: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:35 Sa 24.10.2009
Autor: ZodiacXP

Ok stimmt. Das kann garnicht für alle x gelten, da die Menge dann nicht nach oben beschränkt wäre. Finds schwer die Gedanken formal aufzuschreiben.

Sei für alle x: $x [mm] \le [/mm] sup M - [mm] \varepsilon \gdw x+\varepsilon \le [/mm] sup M$, so muss für beliebige [mm] $\varepsilon \in \IR$ [/mm] $supM = [mm] \infty$ [/mm] was ein Widerspruch zur Annahme ist.

Bezug
                                        
Bezug
supM < inf => supM - e < x: Antwort
Status: (Antwort) fertig Status 
Datum: 21:44 Sa 24.10.2009
Autor: rainerS

Hallo!

> Ok stimmt. Das kann garnicht für alle x gelten, da die
> Menge dann nicht nach oben beschränkt wäre. Finds schwer
> die Gedanken formal aufzuschreiben.
>  
> Sei für alle x: [mm]x \le sup M - \varepsilon \gdw x+\varepsilon \le sup M[/mm],
> so muss für beliebige [mm]\varepsilon \in \IR[/mm] [mm]supM = \infty[/mm]
> was ein Widerspruch zur Annahme ist.

Das stimmt nicht ganz, denn die Annahme war (als Negation der Voraussetzung), dass es ein solches [mm] $\varepsilon$ [/mm] gibt, für das es kein [mm] $x\in [/mm] M$ gibt mit $x > [mm] \sup [/mm] M [mm] -\varepsilon$. [/mm] Dann sind alle $x [mm] \le \sup [/mm] M [mm] -\varepsilon$. [/mm] Damit ist [mm] $\sup M-\varepsilon [/mm] < [mm] \sup [/mm] M$ eine obere Schranke. Das ist ein Widerspruch zur Voraussetzung, dass [mm] $\sup [/mm] M$ die kleinste obere Schranke ist.

Viele Grüße
   Rainer

Bezug
                                                
Bezug
supM < inf => supM - e < x: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:57 Sa 24.10.2009
Autor: ZodiacXP

Hammer. Wieso kann mein Kopf so etwas offensichtliches nicht einfach ausspucken? Beschämend.

Jetzt sehe ich wie die Definition verwendet wurde! Es ist furchtbar logisch, aber wie gesagt: Formal hink ich hinterher.

Vielen Dank!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]