matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare GleichungssystemeÜberbestimmtes gleichungssys.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Gleichungssysteme" - Überbestimmtes gleichungssys.
Überbestimmtes gleichungssys. < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Überbestimmtes gleichungssys.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:37 Fr 23.04.2010
Autor: slatif79

Hi, ich hab ein Problem ein überbestimmtest gleichungssystem zu lösen und hoffe jemand kann mir helfen.
Ich hab es mit der Methoder der kleinsten Quadrate versucht.
Dazu habe ich die Gleichung in eine Matixform gebracht und versucht, sie nach der Formel
A*X = B nach X aufzulösen.
X = inv(A'A) * A'B
Bei einer kleinen Beispielmatrix geht das auch und ich kriege die Werte aber wenn ich diese Formel bei meiner großen
29*24 Matrix benutzen will klappt die invertierung nicht.
Ich kriege zwar ein Ergebnis aber es ist nich richtig.
Ich gebe alle Schritte übrigens in Matlab ein.
Die Housholdertransformation hat auch nichts gebracht.
Das Problem liegt nicht an der Dimension der Matrix, da es mit einer geringeren Dimension auch nicht geht.
Gibt es ein alternatives Verfahren, so ein Geleichungssystem zu lösen?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Überbestimmtes gleichungssys.: Antwort
Status: (Antwort) fertig Status 
Datum: 04:23 Sa 24.04.2010
Autor: Mr.Teutone

Hallo,

für dein Ausgleichsproblem kann man zeigen, dass immer eine Lösung existiert, also die Menge [mm] $L=\big\{\vec{x}\colon A^T A\vec{x}=A^T \vec{b}\big\}$ [/mm] nicht leer ist.

Um die sogenannten Normalengleichungen zu lösen, ist das Invertieren aber vermutlich eine schlechte Idee. Ich empfehle stattdessen die Cholesky-Zerlegung. Also:

1: L=chol(A'A);
2: y=L'\(A'b);
3: x=L\y


Dabei ist [mm] $\var{L}$ [/mm] eine obere Dreiecksmatrix, so dass $L^TL=A^TA$ gilt und dann ist eben bloß noch [mm] $L^T\vec{y}=A^T\vec{b}$ [/mm] und anschließend [mm] $L\vec{x}=\vec{y}$ [/mm] zu lösen.

Bezug
                
Bezug
Überbestimmtes gleichungssys.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:24 Di 27.04.2010
Autor: slatif79

Hi, danke für die Antwort aber gilt die Cholesky-Zerlegung nicht nur für eine quadratische matrix? In meinem Fall würde dieses Verfahren ja dann nicht anwendbar sein oder? Ich habe ja ein überbestimmtes gleichungssystem und somit mehr zeilen als spalten.

Bezug
                        
Bezug
Überbestimmtes gleichungssys.: Antwort
Status: (Antwort) fertig Status 
Datum: 22:14 Mi 28.04.2010
Autor: Mr.Teutone

Der Sinn der Methode der kleinsten Quadrate ist ja gerade, dass ein sogenanntes Ausgleichsproblem der Form [mm] \|A\vec{x}-\vec{b}\|_2\to\min [/mm] statt des ursprünglichem überbestimmten LGS [mm] A\vec{x}=\vec{b} [/mm] gelöst wird. Dieses Ausgleichsproblem wird dann eben immer durch die oben von mir erwähnten Normalengleichungen gelöst.

Das Einzige, was quadratisch sein muss, ist die Matrix $A^TA$, und das ist sie immer!

Probier die Cholesky-Zerlegung, bzw. die oben von mir geposteten Befehle einfach mal aus, es ist genau das, was du suchst. ;-)

Bezug
        
Bezug
Überbestimmtes gleichungssys.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:27 Sa 24.04.2010
Autor: angela.h.b.

Hallo,

[willkommenmr].

> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Das stimmt nicht.
ich bitte Dich, in Zukunft die Forenregeln in vollem Umfange einzuhalten.

Gruß v. Angela




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]