matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisÜbergang Summe ->Integral
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis" - Übergang Summe ->Integral
Übergang Summe ->Integral < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Übergang Summe ->Integral: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 10:53 Mo 16.01.2006
Autor: MAOAM

Hallo,

folgendes: die Mode einer Sinuswelle k in einem Resonanzkörper ist bestimmt durch [mm] k\*L=\pi\*i [/mm] , wobei L die Länge des Resonanzkörpers ist. Wenn nun  [mm] $\Delta [/mm] k [mm] \to [/mm] 0$ geht, so geht $ [mm] \summe_{k} \to \bruch{L}{\pi}\integral [/mm] dk$. Mein Problem ist der Faktor vor dem Integral. Wie ist der begründet?

Danke

        
Bezug
Übergang Summe ->Integral: unklar
Status: (Antwort) fertig Status 
Datum: 13:23 Mo 16.01.2006
Autor: leduart

Hallo
Ich verstehe deine Frage nicht ganz, hast du das vielleicht zu verkürzt aufgeschrieben, und es handelt sich um ne Fourrierreihe? denn [mm] \Delta [/mm] k gegen 0 versteh ich nicht. auch nicht [mm] k*L=\pi*i [/mm] wo ist da ein [mm] \Delta [/mm] k?
flalls es sich um ne Fourrierreihe handelt ist der Faktor vor dem Integral einfach die Normierung des Skalarproduktes.
Gruss leduart

Bezug
        
Bezug
Übergang Summe ->Integral: Frage (für Interessierte)
Status: (Frage) für Interessierte Status 
Datum: 17:11 Mo 16.01.2006
Autor: MAOAM

Hallo,

in einem Resonanzkasten des Volumens [mm] $V=L^{3}$ [/mm] lassen sich stehende Wellen erzeugen, die mit [mm] $\psi (x)=e^{ikr}$ [/mm] beschrieben werden und deren Energie durch [mm] $E_{k}=\hbar\omega(n_{k}+\bruch{1}{2})$ [/mm] gegeben ist. Die Gesamtenergie aller Wellen im Kasten ist dann $E= [mm] \summe_{k=1} E_{k}$. [/mm] - Es können sich also alle Wellen im Kasten befinden die der Randbedingung [mm] $k\*L=\pi\*i$ [/mm] genügen (an der Wand muss die Funktion null sein). Es können unendlich viele Wellen diese Bedingung erfüllen da k nach oben nicht begrenzt ist. Bei einer sehr hohen Wellenzahl k ist der unterschied zwischen zwei Wellenmodi [mm] $k_{i}-k_{j}=\Delta [/mm] k$ klein, [mm] $k>>\Delta [/mm] k$. Somit kann man die Summe der Energie durch ein Integral [mm] $\bruch{V}{(\pi)^{3}} \integral [/mm] dk$ auswerten. Ich hoffe jemand kann mir erkären wozu der Faktor [mm] $\bruch{V}{(\pi)^{3}}$ [/mm] dient. ;)

Bezug
                
Bezug
Übergang Summe ->Integral: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:23 Do 19.01.2006
Autor: matux

Hallo MAOAM!

Wir bedauern, dass Deine Frage nicht in der von dir eingestellten Fälligkeitszeit beantwortet wurde.

Der wahrscheinlichste Grund dafür ist, dass ganz einfach niemand, der dir hätte helfen können, im Fälligkeitszeitraum online war. Bitte bedenke, dass jede Hilfe hier freiwillig und ehrenamtlich gegeben wird.

Wie angekündigt gehen wir nun davon aus, dass du an einer Antwort nicht mehr interessiert bist. Die Frage taucht deswegen nicht mehr in der Liste der offenen Fragen, sondern nur noch in der Liste der Fragen für Interessierte auf.
Falls du weiterhin an einer Antwort interessiert bist, stelle einfach eine weitere Frage in dieser Diskussion.

Wir wünschen dir beim nächsten Mal mehr Erfolg! [kleeblatt]

Viele Grüße,
Matux, der Foren-Agent

Allgemeine Tipps wie du dem Überschreiten der Fälligkeitsdauer entgegenwirken kannst findest du in den Regeln für die Benutzung unserer Foren.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]