matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGeoGebraumschriebenes Dreieck
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "GeoGebra" - umschriebenes Dreieck
umschriebenes Dreieck < GeoGebra < Mathe-Software < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "GeoGebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

umschriebenes Dreieck: Tipp zur Darstellung
Status: (Frage) beantwortet Status 
Datum: 22:34 Do 12.11.2009
Autor: Andariella

Hallo an alle Geogebra-Fans! :)

Ich hab da nochmal eine Frage:

Behauptung: unter allen dem Einheitskreis umschriebenen n-Eck, ist des reguläre n-Eck, das mit dem kleinsten Flächeninhalt.

Mögliche Begründung bzw. Herleitung dieser Behauptung z.B. in Form von Spiegelungen, Drehungen bzw. grafische Darstellung.

Hat vielleicht jemand eine Idee, wie das möglich ist?


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
umschriebenes Dreieck: Antwort
Status: (Antwort) fertig Status 
Datum: 17:27 Fr 13.11.2009
Autor: abakus


> Hallo an alle Geogebra-Fans! :)
>  
> Ich hab da nochmal eine Frage:
>  
> Behauptung: unter allen dem Einheitskreis umschriebenen
> n-Eck, ist des reguläre n-Eck, das mit dem kleinsten
> Flächeninhalt.
>  
> Mögliche Begründung bzw. Herleitung dieser Behauptung
> z.B. in Form von Spiegelungen, Drehungen bzw. grafische
> Darstellung.
>  
> Hat vielleicht jemand eine Idee, wie das möglich ist?

Hallo,
erzeuge NICHT ein n-Eck, um anschließend einen Inkreis hineinzubaseln (den es für ein n-Ecke nur ganz selten gibt...)
Erstelle einen Kreis, lege einige Punkte auf diesem Kreis fest und verwende für den Kreis und den jeweiligen Punkt das Tangentenwerkzeug.
Die Eckpunkte des n-Ecks ergeben sich somit erst aus den Schnittpunkten benachbarter Tangenten (Werkzeug "Schnitt").
Nachträglich kannst du die Eckpunkte mit dem Polygon-Werkzeug verbinden und die eigentlichen Tangenten unsichtbar machen, um das Linienwirrwar zu verringern.
Lasse jetzt alle Punkte stehen und bewegen nur den Berührungspunkt (ich nenne ihn mal [mm] P_2) [/mm] zwischen seinen beiden Nachbar-Berührungspunkten (nenne ich mal [mm] P_1 [/mm] und [mm] P_3) [/mm] hin und her.
Der Mittelpunkt des Inkreises sei M.
Der Großteil der Figur bleibt unverändert, lediglich die beiden Drachenvierecke, die zwischen den Radien [mm] MP_1 [/mm] und [mm] MP_2 [/mm] (bzw. zwischen [mm] MP_2 [/mm] und [mm] MP_3) [/mm] liegen, ändern Form und Größe.
Demonstriere zunächst, dass die Summe dieser beiden Flächeninhalte (von den Drachenvierecken) minimal wird, wenn [mm] P_2 [/mm] eine "Mittellage" zwischen [mm] P_1 [/mm] und [mm] P_3 [/mm] einnimmt.
Konkrete Fragen zur Bedienung von Geogebra stelle am besten im ggb-Benutzerforum unter
http://www.geogebra.org/forum/viewforum.php?f=26
Gruß Abakus

>  
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
                
Bezug
umschriebenes Dreieck: oki
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:17 Fr 13.11.2009
Autor: Andariella

Vielen Dank für deine Mühe! :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "GeoGebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]