matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche Differentialgleichungenungewohnte DGL lösen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Gewöhnliche Differentialgleichungen" - ungewohnte DGL lösen
ungewohnte DGL lösen < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

ungewohnte DGL lösen: Tipps, Ideen
Status: (Frage) beantwortet Status 
Datum: 17:15 Mo 01.02.2010
Autor: pavelle

Aufgabe
gesucht ist die allgemeine Lösung von:
y'=1+y²

Musterlösung: y(x)=tan(x+C)

Mein Lösungsansatz:

[mm] \frac{dy}{dx}=1+y^2 \Rightarrow \frac{1}{1+y^2}dy=dx [/mm]

Substitution:  [mm] u=1+y^2 [/mm]   u'=2y   [mm] \frac{du}{dy}=2y \Rightarrow dy=\frac{du}{2y} [/mm]

[mm] \int \! \frac{1}{u^2} [/mm] * [mm] \frac{1}{2y} \, [/mm] du


ab hier weiß ich leider nicht mehr weiter, vorallem wie ich 1/2y behandeln soll, als Konstante? Eher nicht.

Für alle Tipps und Hilfestellungen bin ich euch dankbar

        
Bezug
ungewohnte DGL lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:18 Mo 01.02.2010
Autor: steppenhahn

Hallo,

> gesucht ist die allgemeine Lösung von:
>  y'=1+y²
>  
> Musterlösung: y(x)=tan(x+C)
>  Mein Lösungsansatz:
>  
> [mm]\frac{dy}{dx}=1+y^{2} \Rightarrow \frac{1}{1+y^2}dy=dx[/mm]

Bis hierher ist alles wunderbar.

> Substitution:  [mm]u=1+y^2[/mm]   u'=2y   [mm]\frac{du}{dy}=2y \Rightarrow dy=\frac{du}{2y}[/mm]
>  
> [mm]\int \! \frac{1}{u^2}[/mm] * [mm]\frac{1}{2y} \,[/mm] du
>
>
> ab hier weiß ich leider nicht mehr weiter, vorallem wie
> ich 1/2y behandeln soll, als Konstante? Eher nicht.

Nein, du darst es natürlich nicht als Konstante behandeln, es hängt ja von u ab.
(und u hängt auch von y ab).
Auf diesem Wege wirst du leider nicht zum Ziel kommen. Du musst wissen, dass

[mm] $\integral{\frac{1}{1+x^{2}} dx} [/mm] = arctan(x) + c$

ist. Wenn du es noch nicht wusstest, weißt du es jetzt ;-).

Grüße,
Stefan

Bezug
                
Bezug
ungewohnte DGL lösen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:32 Mo 01.02.2010
Autor: pavelle

hehe ok ;-)

so Fälle gibt es sicherlich öffters, wüsstest du eventuell ein Buch oder Formelsammlung bzw könntest du mir eins empfehlen in dem solche aufgelistet sind?

Gruß

Bezug
                        
Bezug
ungewohnte DGL lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:39 Mo 01.02.2010
Autor: steppenhahn

Hallo,

so häufig sind die Fälle nun auch wieder nicht ;-).
Es ist eben bloß problematisch bei diesen Winkelfunktionen, weil manchmal braucht man auch für's Substituieren diese Ableitungen.

Hier die wichtigsten:

$arctan'(x) = [mm] \frac{1}{1+x^{2}}$ [/mm]

$arcsin'(x) = [mm] \frac{1}{\sqrt{1-x^{2}}}$ [/mm]

$arccos'(x) = [mm] -\frac{1}{\sqrt{1-x^{2}}}$ [/mm]

Das war's eigentlich schon. Auf die Ableitungen dieser Funktionen kannst du übrigens auch "selbst" kommen, indem du die Umkehrregel für's Differenzieren anwendest:

[]Hier

Nur muss man eben den Ausdruck auf der "rechten Seite" mal gesehen haben, damit man das Integral lösen kann.

Grüße,
Stefan

Bezug
                                
Bezug
ungewohnte DGL lösen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:17 Mo 01.02.2010
Autor: pavelle

ok, danke dir :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]