matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Stochastikurnenmodell
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Stochastik" - urnenmodell
urnenmodell < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

urnenmodell: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:45 So 07.02.2010
Autor: elba

Aufgabe
In einer Urne liegen fünf schwarze und vier weiße Kugeln. Peter und Paul spielen folgendes Spiel:
Aus der Urne werden ohne Zurücklegen m [mm] (1\le [/mm] m [mm] \ge [/mm] 9) Kugeln gezogen. Peter gewinnt wenn unter den gezogenen Kugeln mindestens gleiche viele weiße wie schwarze sind. Andernfalls gewinnt Paul. Peter darf m im voraus festlegen. Welche Wahl von m ist für ihn am günstigsten?

Also "mindestens gleich viel" heißt doch, dass auch mehr weiße als schwarze oder umgekehrt gezogen werden können, oder?
Dann wäre m=7 doch am günstigsten, weil wenn theoretisch 5 mal hintereinander die gleiche Farbe gezogen wird, was bei schwarz möglich wäre, wären die letzten zwei auf jeden Fall rot, oder?
Wie kann man das denn irgendwie mathematischer aufschreiben??

        
Bezug
urnenmodell: Antwort
Status: (Antwort) fertig Status 
Datum: 12:56 So 07.02.2010
Autor: abakus


> In einer Urne liegen fünf schwarze und vier weiße Kugeln.
> Peter und Paul spielen folgendes Spiel:
>  Aus der Urne werden ohne Zurücklegen m [mm](1\le[/mm] m [mm]\ge[/mm] 9)
> Kugeln gezogen. Peter gewinnt wenn unter den gezogenen
> Kugeln mindestens gleiche viele weiße wie schwarze sind.
> Andernfalls gewinnt Paul. Peter darf m im voraus festlegen.
> Welche Wahl von m ist für ihn am günstigsten?
>  Also "mindestens gleich viel" heißt doch, dass auch mehr
> weiße als schwarze oder umgekehrt gezogen werden können,
> oder?
> Dann wäre m=7 doch am günstigsten, weil wenn theoretisch
> 5 mal hintereinander die gleiche Farbe gezogen wird, was
> bei schwarz möglich wäre, wären die letzten zwei auf
> jeden Fall rot, oder?

Dasa ausgerechnet diese Zugfolge eintritt, ist ja wohl sehr unwahrscheinlich.

>  Wie kann man das denn irgendwie mathematischer
> aufschreiben??

Du musst schon eine Fallunterscheidung aller 9 möglichen Fälle für m machen.
m=1: Siegchance für Peter 4/9
m=2: Peter verliert nur bei schwarz-schwarz. Seine Gewinnchance ist somit 1-((5/9)*(4/8))=....
m=3: Peter gewinnt bei www, sww,wsw, wws. Gewinnwahrscheinlichkeit:...
m=4:
...
...
m=9:
Ganz ohne Arbeit geht es hier nicht.
Gruß Abakus


Bezug
                
Bezug
urnenmodell: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:00 So 07.02.2010
Autor: elba

gut, das klingt ganz logisch.
aber warum ist denn bei m=1 die Siegchance für Peter [mm] \bruch{4}{9}?? [/mm]
Bei m=1 hat Peter doch gar keine Chance zu gewinnen, oder seh ich das falsch?? Es müssen doch von beiden Farben mind. gleich viele gezogen worden sein, was bei m=1 doch nicht möglich ist.

Bezug
                        
Bezug
urnenmodell: Antwort
Status: (Antwort) fertig Status 
Datum: 13:04 So 07.02.2010
Autor: abakus


> gut, das klingt ganz logisch.
>  aber warum ist denn bei m=1 die Siegchance für Peter
> [mm]\bruch{4}{9}??[/mm]
>  Bei m=1 hat Peter doch gar keine Chance zu gewinnen, oder
> seh ich das falsch?? Es müssen doch von beiden Farben
> mind. gleich viele gezogen worden sein, was bei m=1 doch
> nicht möglich ist.

Hallo,
"mindestes gleich viele weiße wie schwarze" heißt:
es werden genau gleich viele weiße und schwarze
ODER es werden sogar mehr weiße als schwarze gezogen.
Peter gewinnt also, wenn [mm] w\ge [/mm] s gilt.
Gruß Abakus


Bezug
                                
Bezug
urnenmodell: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:42 So 07.02.2010
Autor: elba

Danke, so hatte ich das gar nicht verstanden.
Ich hab das jetzt mal versucht zu rechnen.
Und bekomme jetzt als günstigste Wahl m=4 mit 64,29%.
Wäre nett, wenn du das für m=4 einmal nachrechnen könntest, damit ich weiß, ob das Ergebnis dafür überhaupt stimmt.

Bezug
                                        
Bezug
urnenmodell: Antwort
Status: (Antwort) fertig Status 
Datum: 14:56 So 07.02.2010
Autor: abakus


> Danke, so hatte ich das gar nicht verstanden.
>  Ich hab das jetzt mal versucht zu rechnen.
> Und bekomme jetzt als günstigste Wahl m=4 mit 64,29%.
> Wäre nett, wenn du das für m=4 einmal nachrechnen
> könntest, damit ich weiß, ob das Ergebnis dafür
> überhaupt stimmt.

Schnellere Hilfe bekommst du im Forum, wenn du vorrechnest.
Mein Tipp: am schnellsten ist das Gegenereignis berechnet. es besteht aus
- 4 mal schwarz, Wahrsch. (5*4*3*2)/(9*8*7*6)
- 3 mal schwarz, einmal weiß (dafür 4 verschiedene Reihenfolgen mit jeweils (5*4*3*4)/(9*8*7*6)
Gruß Abakus

Bezug
                                                
Bezug
urnenmodell: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:11 So 07.02.2010
Autor: elba

Ja, ich hab das auch mit dem Gegenereignis berechnet:
1-( [mm] \bruch{5}{9}*\bruch{4}{8}*\bruch{3}{7}*\bruch{2}{6}+4*(\bruch{5}{9}*\bruch{4}{8}*\bruch{3}{7}*\bruch{4}{6})=0,6429 [/mm]

Danke schön!!



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]