matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheoriewahrscheinlichkeitsraum
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Wahrscheinlichkeitstheorie" - wahrscheinlichkeitsraum
wahrscheinlichkeitsraum < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

wahrscheinlichkeitsraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:27 Mi 09.01.2008
Autor: neo-killer

Aufgabe
Seien X eine reellwertige ZV auf einem Wahrscheinlichkeitsram(omega, sigma , P) mit X~U(0,1) und A=(|X-1/2| [mm] \le 1/\wurzel{3}) [/mm]

a)Berechnen Sie P(A)
b)Untersuchen Sie, welche Abschätzung man mit der Tschebyschev-Ugl für P(A) erhält

ich komm bei dem 2 ten teil nicht weiter,

bei der a) hab ich bis jetzt

P(A)= P(|x-1/2| [mm] \le [/mm] 1/ [mm] \wurzel{3}) [/mm]
      [mm] =P(-1/\wurzel{3} \le [/mm] x-1/2 [mm] \le 1/\wurzel{3}) [/mm]
      [mm] =P(-1/\wurzel{3} [/mm] +1/2 [mm] \le [/mm] x [mm] \le 1/\wurzel{3}+1/2) [/mm]
      =P(~ -0,077 [mm] \le [/mm] x [mm] \le [/mm] ~ 1,077)
      =F(1,077)- F(-0,077)
      = 1 -0
      = 1

hoff das das stimmt oder wie muss ich das schreiben?


zu b) hab ich garkeinen plan

        
Bezug
wahrscheinlichkeitsraum: Antwort
Status: (Antwort) fertig Status 
Datum: 16:50 Mi 09.01.2008
Autor: luis52


> Seien X eine reellwertige ZV auf einem
> Wahrscheinlichkeitsram(omega, sigma , P) mit X~U(0,1) und
> A=(|X-1/2| [mm]\le 1/\wurzel{3})[/mm]
>  
> a)Berechnen Sie P(A)
>  b)Untersuchen Sie, welche Abschätzung man mit der
> Tschebyschev-Ugl für P(A) erhält
>  ich komm bei dem 2 ten teil nicht weiter,
>  
> bei der a) hab ich bis jetzt
>
> P(A)= P(|x-1/2| [mm]\le[/mm] 1/ [mm]\wurzel{3})[/mm]
>        [mm]=P(-1/\wurzel{3} \le[/mm] x-1/2 [mm]\le 1/\wurzel{3})[/mm]
>        
> [mm]=P(-1/\wurzel{3}[/mm] +1/2 [mm]\le[/mm] x [mm]\le 1/\wurzel{3}+1/2)[/mm]
>        
> =P(~ -0,077 [mm]\le[/mm] x [mm]\le[/mm] ~ 1,077)
>        =F(1,077)- F(-0,077)
>        = 1 -0
>        = 1
>  
> hoff das das stimmt oder wie muss ich das schreiben?

[ok]

>  
>
> zu b) hab ich garkeinen plan

Die TU besagt, dass [mm] $P(|X-\operatorname{E}[X]|\le k)\ge 1-\operatorname{Var}[X]/k^2$. [/mm] Wegen
[mm] $\operatorname{E}[X]=1/2$ [/mm] und [mm] $\operatorname{Var}[X]=1/12$ [/mm] ist die Unterschranke hier 1-(1/12)/(1/3)=0.75.

vg Luis



Bezug
                
Bezug
wahrscheinlichkeitsraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:08 Mi 09.01.2008
Autor: neo-killer

hi noch mal , und sorry das ich hier rum nerve aber ich versteh leider nicht genau wie du darauf kommst mit dem $ [mm] \operatorname{Var}[X]=1/12 [/mm] $ und dem 1/ 3 von 1-(1/12)/(1/3)=0.75

Bezug
                        
Bezug
wahrscheinlichkeitsraum: Antwort
Status: (Antwort) fertig Status 
Datum: 17:48 Mi 09.01.2008
Autor: luis52


> hi noch mal , und sorry das ich hier rum nerve aber ich
> versteh leider nicht genau wie du darauf kommst mit dem
> [mm]\operatorname{Var}[X]=1/12[/mm]

Na, berechne doch einmal die Varianz der Gleichverteilung im Intervall (0,1).

> und dem 1/ 3 von
> 1-(1/12)/(1/3)=0.75

Setze [mm] $k=1/\sqrt{3}$ [/mm] in der TU.


vg Luis


Bezug
                                
Bezug
wahrscheinlichkeitsraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:14 Mi 09.01.2008
Autor: neo-killer

Aufgabe
Var(X)=1/12

hi , ich komm jedes mal nur auf 1/4 als varianz ,
und dann komm ich auf 2.25 also untere schranke.

weiss nciht was ich falsch mach.

kannst du mir mal genau hin scheiben wie ich die varianz berechne, weil ich find das nicht, was ich da falsch mach.

Bezug
                                        
Bezug
wahrscheinlichkeitsraum: Antwort
Status: (Antwort) fertig Status 
Datum: 20:41 Mi 09.01.2008
Autor: luis52


>  hi , ich komm jedes mal nur auf 1/4 als varianz ,

Zeig doch mal deine Rechnung. Auf alle musst du


[mm] $\operatorname{Var}[X]=\int_{-\infty}^{\infty}(x-\operatorname{E}[X])^2f(x)\,dx= \int_{0}^{1}(x-1/2)^2\,dx$ [/mm]

berechnen.


vg Luis

Bezug
                                                
Bezug
wahrscheinlichkeitsraum: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:13 Mi 09.01.2008
Autor: neo-killer

So ,  weiss jetzt was ich falsch gemacht hab , ich hab vergessen das binom aufzulösen und hab von daher ne andere stamm funktion bekommen und mich dabei auch noch verrechnet aber jetzt klapts


[mm] \int_{0}^{1}(x-1/2)^2\,dx [/mm]
[mm] =\int_{0}^{1} x^2 [/mm] -x +1/4 dx
[mm] =[x^3 [/mm] /3 - [mm] x^2 [/mm] /2 + [mm] 1/4x]^1_0 [/mm]
= 1/3 - 1/2 + 1/4
=1/12

und danke für die hilfe, :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]