matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen
   Einstieg
   
   Index aller Artikel
   
   Hilfe / Dokumentation
   Richtlinien
   Textgestaltung
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMaterialForum357
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
MaterialForum357
Mach mit! und verbessere/erweitere diesen Artikel!
Artikel • Seite bearbeiten • Versionen/Autoren

MaterialForum357

Kurvendiskussion


ganzrationale Funktionen

In diesem Abschnitt wird eine vollständige Kurvendiskussion für eine ganzrationale Funktion durchgeführt. Als Beispielfunktion dient dabei die Funktion

$ f(x) = 0,5x^3 - 4x^2 + 8x $

Ganzrationale Funktionen sind allgemein stetig und differenzierbar, sodass man sich über Definitionslücken und Polstellen keine Gedanken machen muss.

Definitionsbereich

Da wie bereits erwähnt keine Polstellen oder Definitionslücken auftreten können gilt für ganzrationale Funktionen:

$ D = \IR $

Der Definitionsbereich ist also stets die Menge der reellen Zahlen (solange in der Aufgabenstellung nicht explizit Ausnahmen angegeben sind).

Symmetrieeigenschaften

An ganzrationalen Funktionen lässt sich sehr einfach erkennen ob eine Funktion achsensymmetrisch zur y-Achse oder punktsymmetrisch zum Ursprung ist:

Besitzt die ganzrationale Funktion ausschliesslich gerade Exponenten, so ist die Funktion achsensymmetrisch zur y-Achse.

Besitzt die ganzrationale Funktion ausschliesslich ungeradzahlige Exponenten, so ist die Funktion punktsymmetrisch zum Koordinatenursprung.

Treten sowohl geradzahlige als auch ungeradzahlige Exponenten auf so liegt keine Symmetrie vor.

Schnittpunkte mit den Koordinatenachsen

Den Schnittpunkt mir der y-Achse (y-Achsenabschnitt) erhält man, indem man in die Funktion den x-Wert $ x = 0 $ einsetzt. Für die Beispielfunktion würde gelten:

f(0) = (0,5 * 0) - (4 * 0) + (8 * 0) = 0

$ S_Y (0|0) $

Die Schnittpunkte mit der x-Achse (Nullstellen) kann man mit Hilfe verschiedener Verfahren ermitteln (z.B. p-q-Formel, Mitternachtsformel, quadratische Ergänzung u.s.w.). Für die Beispielfunktion würde gelten:

f(x) = 0

$ 0,5x^3 - 4x^2 + 8x = 0 $

Man kann die Funktion durch Ausklammern in eine quadratische Funktion umformen und gleichzeitig die erste Nullstelle ermitteln:

$ x (0,5x^2 - 4x + 8) $

Das ausgeklammerte x wird nur Null, wenn man für x auch Null einsetzt und ein Produkt ist genau dann Null, wenn einer der Faktoren Null ist. Daraus folgt:

$ x_1 = 0 $

$ S_x_1 (0|0) $

Um die restlichen Nullstellen der Beispielfunktion zu ermitteln kann man nun zum Beispiel die p-q-Formel verwenden, wenn man zuvur den Faktor vor dem ersten x entfernt (alternativ verwendet man die Mitternachtsformel):

$ 0,5x^2 - 4x + 8 |\cdot{}2 $

$ = x^2 - 8x + 16 $

p = -8
q = 16

Es ergibt sich also:

$ - \bruch {-8}{2}\ +/- \wurzel{\bruch{-8^2}{4}\ - 16}\ $

$ x_2 = 4 $

$ S_x_2 (4|0) $

Extrema



Exponentialfunktionen


Logarithmusfunktionen


Integralrechnung


Vektorrechnung


Lösen von linearen Gleichungssystemen (Lineare Algebra)


Analytische Geometrie

Mitteilung des Autors: Artikel unvollständig, wird fortgesetzt !!!





Erstellt: So 11.05.2008 von argl
Letzte Änderung: Di 20.05.2008 um 19:22 von argl
Weitere Autoren: Marc
Artikel • Seite bearbeiten • Versionen/Autoren • Titel ändern • Artikel löschen • Quelltext

^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]